.NTATION PAGE

Form Approved
QOPM No. 0704-0188

(Z)

| AD-A264 g
5mmumﬁumm

1 hour per respanse, inchuding the tme 10f reviewing EtrLCIONE, Sea/ching 915G GLd SOUCAS RATNerng and mauma.nwid W6 dais
this burden estimate of any 0ther 3508t of this coliaction of formation. NCLuing bugYestone 10! 1eduCing I burder 1o Washngion
15 Jotlerson Dava Highway. Sute 1204, Arlington, YA 22202-4302, and 10 the Ofce of Intormaton anc Reguiatory Aftars. O of

’l AGLING T Ul wrmes qmem. o - :PORT DATE 3. REPORT TYPE AND DATES COVERED
' Final: 19 Mar 93

& TITLE AND SUBTITLE

Validation Summary Report: Digital Equipment Corporation, DEC Ada for OpenVMS
VAX Systems, Version 3.0-7, VAXstation 4000 Mode! 60 (host} => VAXstation 3100
Model 48 (target), 93031951.11317

6. AUTHOR(S)

National institute of Standards and Technology
Gaithersburg, MD

USA

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National Institute of Standards and Technology
National Computer Systems Laboratory

Bidg. 255, Rm A266

Gaithersburg, MD 20899 USA

8 PERFORMING ORGANIZATION
REPORT NUMBER

NIST93DEC505_3_1.11

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Ada Joint Program Office

DTIC

United States Department of Defense
Pentagon, RM 3E114
Washington, D.C. 20301-3081

ELECTE
mAY 2 6 1393

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

S ——— ——
11. SUPPLEMENTARY NOTES

[72a DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

e —————————————
13 ABSTRACT (Maximum 200 words)

Digital Equipment Corporation, DEC Ada for OpenVMS VAX Systems, Version 3.0-7, VAXstation 4000 Model 60 (under
VMS Version 5.5) (host) 1o VAXstation 3100 Mode! 48 (under VAXELN Version 4.4) (target), ACVC 1.11

93-11

@

R) s KRR

:WWWWWMWWN

fl/!

74 SUBJECT TEAMS
Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO.

15, NUMBER OF PAGES

16. PRICE CODE

18, SECURITY CLASSIFICATION
UNCLASSIFED

17, SEGURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

OF ABSTRACT
UNCLASSIFIED

18, SECURITY CLASSIFICATION

e e "t C———
20. LIMITATION OF ABSTRACT

NSN 7540-01-280-550

Standard Form 288, (Rev. 2-89)
Prescribad by ANSI Std. 239-128

AVF Control Number: NIST93DECS505_ 3 1.11

DATE COMPLETED
BEFORE ON-SITE: 93-02-09
AFTER ON-SITE: 93-03-22
REVISIONS:

Ada COMPILER
VALIDATION SUMMARY REPORT:
Cer-ificate Number: 930319S1.11317
Digital Equipment Corporation
DEC Ada for OpenVMS VAX Systems, Version 3.0-7
VAXstation 4000 Model 60 =>
VAXstation 3100 Model 48

Prepared By:
Software Standards Validation Group
Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

AVF Cont

rol Number: NIST93DEC505_3_1.11

Certificate Information

The following Ada implementation was tested and determined to pass

ACVC 1.11. Testing was comple

Compiler Name and Version:

Host Computer System:

Target Comruter System:

Target Runtime System:

ted on March 19, 1993.

DEC Ada for OpenVMS VAX Systems,
Version 3.0-7

VAXstation 4000 Model 60 under VMS
Version 5.5

VAXstation 3100 Model 48 under
VAXELN Version 4.4

VAXELN Ada Verson 2.2

See section 3.1 for any additional information about the testing

environment.

As a result of this validation effort, Validation Certificate
930319S81.11317 is awarded to Digital Equipment Corporation. This

certificate expires 2 years aft
ANSI.

This report has been reviewed

Ada Validatlion
Dr. David K. Jeffe}sdn
Chief, Information Systems
Engineering Division (ISED)
Computer Syste
National Institute of Standards and Technology

Building

er ANSI/MIL-STD-1815B is approved by

and is approved.

AL)

// %;1«/} 5 (.'1(4_%1';_'-\.—- .

Ada Validation Facility

Mr. L. Arnold Johnson

Manager, Software Standards
Validation Group

ms Laboratory (CSL)

225, Room A266

Gaithersburg MD 20899

W7

AdaéVaé% ation Organization
Direct L/bomputer & Software
Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

AP 3L s

Ada Joint Program Office
Dr. John Solomond
Director

Department of Defense
Washington DC 20301

e AR I g A o e
DECLARATICN CrF CONFORMANCE

The ‘following declaration of conformance was supplied by the
customer.

Customex: Digital Equipment Corporation
Certificate Awardee: Digital Equipment Corporation
Ada Validation Facility: National Institute of Standards and
Technology
Computer Systems Laboratory (CSL)
Software Validation Group

Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.12

Ada Implencatation:

Compiler Name and Version: DEC Ada for OpenvMS VAX Systems,
Version 3.0-7

Host Computer System: VAXstation 4000 Model 60 undexr VMS
Version 5.8
Target Computer System: VAXstation 3100 Model 48 under
VAXELN Version 4.4
Target Runtime System: VAXELN Ada Verson 2.2
Declaration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A 150
8652-1987 in the implementation listed above.

</:D&quQ£9'TZ(AY1WQ4YJL¢${“ .5’2)”/?;

Customer Signature Date
Company Digital Equipment Corporation
Title: Project Manager

Certificate Awardee 3Signature Date

e) Non-Processed Floating-Point
Precision Tests 0

f) Total Number of Inapplicable Tests 80 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the vali ation team for processing. The
contents of the magnetic tape were loaded onto VAX 6000 Model 350
and transferred to the host computer by Ethernet. The test suite
was transferred from the host computer to the target computer by
Ethernet.

After the test files were loaded onto the host computer, the full
set of tests was compiled and then transferred to the target
computer for execution.

The results were captured on the target computer system and
transferred to the host by Ethernet and then transferred from the
host computer to the VAX 6000 Model 350 where a magnetic was
written capturing the test results.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

ADA/COPY_SOURCE/NODEBUG/NODIAG/ERROR_LIMIT=1000/LIST/NOSHOW
Test output, compiler and 1linker 1listings, and job logs were

captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

TABLE OF CONTENTS

CHAPTER l.veececinnasnnannonsas secseveas G eesecestae e eaan 1-1
INTRODUCTION. ¢ st evnteveesencnsevonace I T .1-1
1.1 USE OF THIS VALIDATION SUMMARY REPORT.....s000es.1-1

1.2 REFERENCES....ccceosssrsacsnsnsnsveoscssccsnncsassssl~l

1.3 ACVC TEST CLASSES.cceecressevsosvsosvosesccncscssenl=2

1.4 DEFINITION OF TERMS...ceccteeseccvosssesnceoscssel=d

CHAPTER 2. cceceeceacencsoscsssnsassssassescossncacssssssasessl=l
IMPLEMENTATION DEPENDENCIES. .cec¢cesvcacocsacercsonssesasaald=l
2.1 WITHDRAWN TESTS.ccccetceevrssacessssncrsososssscssscsncssc2=l
2.2 INAPPLICABLE TESTS.:.ieccecccsscssassesssasssesconeecld=l
2.3 TEST MODIFICATIONS:ccecevscessscsasocsncsnccccccsasssecl2=4d

CHAPTER 3. ccccccecoonsscvrovsesasnoscscsnsoescssonssscssasnssosassasld—]
PROCESSING INFORMATION...c.cceccoccnsssossarsrscsnsasacanci~]
3.1 TESTING ENVIRONMENT...ctoceecveeaccressessscncsssld=l

3.2 SUMMARY OF TEST RESULTS:.cceocvosccancansesnscaveassld~l

3.3 TEST EXECUTION. .t cseerosvtosoensasenes.ossvonssssed™2

APPENDIX Ac.oatococoo.ocucacc-on'.I.tcv.'cocvo'--acc-0'0'--A-1
MACRO PARAMETERS . ececsosesvcssosncssesnossscsnnnsnsassesesA=l

APPENDIX B......... T 1
COMPILATION SYSTEM OPTIONS....cceeocenossosccsacessssaeeB-l
LINKEROPTIONS.‘..'D..Q'Ql'C.I.‘1..-0.'0....0...B‘2

APPENDIX C...'..Q.Q. IIIII *® & @ 6 9 ¢ P 09 ® e N 8P COCOOOOOCCUOQQOQCC_]—
APPENDIX F OF THE Ada STANDARD....¢.v2e.n ctecnecsancsrsaC-l

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro90] against the Ada Standard [Ada83)
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro90]. A detailed description
of the ACVC may be found in the current ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systemns,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization

Conputer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1.2 REFERENCES

[Adag83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

1~1

(Pro90) Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User’s Guide, 21 June
1989,

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tesis are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK_FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation 1listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation~-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

1-2

For each Ada implementation, a customized test suite is produced by

the AVF.

and [UG89]).

In order to pass an ACVC an Ada implementation must process each

This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2

test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability (AcCVC)

Ada Implementation

Ada Joint Program
Ooffice (AJPO)

Ada Validation
Facility (AVF)

Ada Validation
Organization (AVO)

Compliance of an
Ada Implementation

The software and any needed hardware that
have to be added to a given host and
target conmputer system to allow
transformation of Ada programs into
executable form and execution thereof.

The means for testing compliance of Ada

implementations, Validation consisting of
the test suite, the support programs, the
ACVC Capability wuser’s guide and the

template for the validation summary (ACVC)
report.

An Ada compiler with its host computer
system and its target computer system.

The part of the certification body which
provides policy and guidance for the Ada
certification Office system.

The part of the certification body which
carries out the procedures required to
establish the compliance of an Ada
implementation.

The part of the certification body that
provides technical guidance for operations
of the Ada certification system.

The ability of the implementation to pass
an ACVC an Ada version.

Computer System

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable Test

IS0

Operating System

A functional unit, consisting of one or
more computers and associated software,
that uses common storage for all or part
of a program and also for all or part of
the data necessary for the execution of
the program; executes user- written or
user-designated prograns; perfornms
user~-designated data manipulation,
including arithmetic operations and logic
operations; and that can execute programs
that modify themselves during execution. A
computer system may be a stand-alone unit
or may consist of several inter-connected
units.

Fulfillment by a product, process or
service of all requirements specified.

An individual or corporate entity who
enters into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

A formal statement from a customer
assuring that conformity is realized or
attainable on the Ada implementation for
which validation status is realized.

A computer system where Ada source
programs are transformed into executable
form.

A test that contains one or more test
objectives found to be irrelevant for the
given Ada implementation.

International Organization for
Standardization.

The Ada standard, or Language Reference
Manual, published as
ANSI/MIL-STD-1815A-1¢83 and ISO 8652-1987.
Citations from the LRM take the form
"<section>.<subsection>:<paragraph>."

Software that controls the execution of
programs and that provides services such
as resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are
predominantly software, but partial or
complete hardware implementations are
possible.

Target Computer
System

Validated Ada
Compiler

Validated Ada
Inplementation

Vaiidation

Withdrawn Test

A computer system where the executable
form of Ada programs are executed.

The compiler of a validated Ada
implementation.

An Ada implementation that has been
validated successfully either by AVF
testing or by registration [Progo0j}.

The process of checking the conformity of
an Ada compiler to the Ada programming
language and of issuing a certificate for
this implementation.

A test found to be incorrect and not used
in conformity testing. A test may be
incorrect because it has an invalid test
objective, fails to nmeet its test
objective, or contains erroneous or
illegal wuse of the Ada programming
language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 95 tests had been
withdrawn by the aAda Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 91-08-02.

E28005C B28006C C32203A C34006D C355081 C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A Cc45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D B83026B cg83026a C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CCl226B
BC3009B BD1BO2B BD1BO6A AD1BO8A BD2A02A CD2AZ21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A8B7A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD80O02A BD8004C cD9oosA CDS005B CDAZ201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

C24113W..Y (3 tests) use a line length in the input file which
exceeds 255 characters.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORT_FLOAT; for this implementation, there is no such type.

2-1

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for

this implementation, MAX MANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE_OVERFLOWS is FALSE for floating point types and the results
of various floatlng-p01nt operations lie outside the range of the
base type; for this implementation, MACHINE_OVERFLOWS is TRUE.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

B91001H checks that an address clause may not precede an entry
declaration; this implementation does not support address clauses
for entries. (See section 2.3.) :

C96005B uses values of type DURATION’s base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes. :

CD2A84A, CD2AB4E, CD2A84I1..J (2 tests), and CD2A840 use 1length
clauses to specifv non-default sizes for access types; this
implementation does not support such sizes.

CD2B15B checks that STORAGE_ERROR is raised when the storage size
specified for a collection is too small to hold a single value of
the designated type; this implementation allocates more space than
was specified by the length clause, as ~llowed by AI-00558.

BD800O1A, BDS8003A, BDSOO4A..B (2 tests), and AD8011A use machine
code insertions; this implementation provides no package
MACHINE_CODE.

The 18 tests listed in the following table check that USE_ERROR is
raised if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode F11e Access Method
CE2102E CREATE OUT_FILE SEQUENTIAL_IO
CE2102F CREATE INOUT_FILE DIRECT_10
CE2102J CREATE OUT_FILE DIRECT_IO
CE2102N OPEN IN_FILE SEQUENTIAL_ IO
CE21020 RESET IN FILE SEQUENTIAL IO
CE2102P OPEN OUT_FILE SEQUENTIAL_1IO
CE2102Q RESET OUT_F.LE SEQUENTIAL_IO

2~2

CE2102R OPEN INOUT_FILE DIRECT_IO
CE2102S RESET INOUT_FILE DIRECT_IO
CE2102T OPEN IN_FILE DIRECT_IO
CE2102U RESET IN_FILE DIRECT_IO
CE2102V OPEN OUT_FILE DIRECT_IO
CE2102W RESET OUT_FILE DIREC:_10
CE3102F RESET Any Mode TEXT_I0
CE3102G DELETE = ======m-- TEXT_IO
CE31021I CREATE OUT_FILE TEXT_I10
CE3102J OPEN IN_FILE TEXT_10
CE3102K OPEN OUT_FILE TEXT_IO

The tests listed in the following table check the given file
operations for the given combination of mode and access method;
this implementation does not support these operations.

Test File Operation Mode File Access Method
CE2105A CREATE IN FILE SEQUENTIAL_IO
CE2105B CREATE IN_FILE DIRECT_IO
CE3109A CREATE IN_FILE TEXT_ 10

The following 12 tests check operations on sequential, direct, and
text files when multiple internal files are associated with the
same external file and one or more are open for writing; USE_ERROR
is raised when this association is attempted.

CE2107B CE2107E CE2107G CE2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115A

CE2107C..D (2 tests), CE2107H, and CE2107L apply function NAME to
temporary sequential, direct, and text files in an attempt to
associate multiple internal files with the same external file;
USE_ERROR is raised because temporary files have no nanme.

CE2108B, CE2108D, and CE3112B use the names of temporary
sequential, direct, and text files that were created in other tests
in order to check that the temporary files are not accessible after
the completion of those tests; for this implementation, temporary
files have no name.

CE2111C checks that a supplied mode parameter can be RESET from
IN_FILE to OUT_FILE (An amplification in accessing privileges while
the external file is being accessed). The proper exception is
raised.

CE2203A checks that WRITE raises USE_ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

2~3

CE2401H, EE2401D, and EE2401G use instantiations of DIRECT_IO with
unconstrained array and record types; this implementation raises
USE_ERROR on the attempt to create a file of such types.

CE2403A checks that WRITE raises USE_ERROR if the capacity of an
external direct file is exceeded; this implementation cannot
restrict file capacity.

CE3304A checks that SET_LINE LENGTH and SET_PAGE LENGTH raise
USE_ERROR if they specify an inappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT/LAST; for this implementation, the value
of COUNT'’LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 1 test.

B91001H was graded inapplicable by Evaluation Modification as
directed by the AVO. This test expects an error to be cited for an
entry declaration that follows an address clause for a preceding
entry; but this implementation does not support address clauses for
entries (rather, it provides a package that allows a task to wait
for the delivery of one or more signals), and so rejects the
address clause.

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adegquately by the information given in the initial pages
of this report.

For technical and sales information about this Ada implementation,
contact:

Attn: Maryanne Cacciola
Ada Product Manager
Digital Egquipment Corporation
110 Spit Brook Road (ZKO02-1/M11)
Nashua, NH 03062
(603) 881-1028

Testing of this Ada implementation was conducted at the customer’s
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the AcCvVC
(Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation’s maximum precision (item e; see section 2.2), and
those that depend on the support of a file system -~ if none is
supported (item d). All tests passed, except those that are listed
in sfctions 2.1 and 2.2 (counted in items b and f, below).

a) Total Number of Applicable Tests 3995
b) Total Nimber of Withdrawn Tests 95
c) Processed Inapplicable Tests 80
d) Non-Processed I/0 Tests 0

3-1

e) Non-Processed Floating-Point
Precision Tests 0

f) Total Number of Inapplicable Tests 80 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

When this implementation was tested, the tests listed in section
2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded onto VAX 6000 Model 350
and transferred to the host computer by Ethernet. The test suite
was transferred from the host computer to the target computer by
Ethernet.

After the test files were loaded onto the host computer, the full
set of tests was compiled and then transferred to the target
computer for execution.

The results were captured on the target computer system and
transferred to the host by Ethernet and then transferred from the
host computer to the VAX 6000 Model 350 where a magnetic was
written capturing the test results.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete 1listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

ADA/COPY_SOURCE/NODEBUG/NODIAG/ERROR_LIMIT=1000/LIST/NOSHOW
Test output, compiler and 1linker 1listings, and job logs were

captured on magnetic tape and archived at the AVF. The listings
examined on~site by the validation team were also archived.

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the
Acvce. The meaning and purpose of these parameters are explained in
(UG89]). The parameter values are presented in two tables. The first
table lists the values that are defined in terms of the maximum input-~
line length, which is the value for $MAX IN LEN--also listed here. These
values are expressed here as Ada string aggregates, where "V" represents
the maximum input-line length.

Macro Parameter Macro Value

SMAX_IN_LEN 255-- Value of V

$BIG_ID1 (L..V-1 => ‘A’/, V => 717)

$BIG_ID2 (1L..V-1 => 'A?, V => 27/)

$SBIG_ID3 (1..V/2 => 'A') & '3’ & (1..V=1-V/2 => 'A’)
$BIG_ID4 (1..V/2 => 'A’) & 4’ & (1..V-1-V/2 => ’A’)
$BIG_INT LIT (1..V=3 => 70r) & 298"

$BIG_REAL_LIT (1..V-5 => 70’) & "690.0"%

$BIG_STRING1 Imeog (1..V/2 => TAr) & 107

$BIG~STRING2 o8 (1..V-1-V/2 => 'AfY & 117 & 'MW/
$BLANKS (1..V=20 => ¢ 1)

$MAX_LEN_INT BASED_LITERAL
"2TM & (1..V-5 => r0f) & "11:"®

$MAX_LEN_REAL_BASED_LITERAL
"16:" & (1..V-7 => ‘0’) & "F.E:"

$MAX STRING_LITERAL ‘"’ & (1..V=-2 => 'A’) & '"/

The following table contains the values for the remaining macro
parameters.

Macro Parameter Macro Value

- —— - WP WD . — - ——— — Y ——— Y — T W S W T ———— —— S ———" S —— o~] —— T~ —— -

$ACC_SIZE
$ALIGNMENT
$COUNT_LAST
$DEFAULT_MEM_SIZE
$DEFAULT_STOR_UNIT
$DEFAULT_SYS_NAME
$DELTA_DOC
$SENTRY_ADDRESS
$ENTRY_ADDRESS1
SENTRY_ADDRESS2
$FIELD_LAST
SFILE_TERMINATOR
$FIXED_NAME
SFLOAT NAME
$FORM_STRING
$FORM_STRING2

$GREATER_THAN DURATION

2_147_483_647

2%%31-1

8

VAXELN

2.0%%(=31)

FCNDECL. ENTRY_ADDRESS
FCNDECL.ENTRY ADDRESS1
FCNDECL. ENTRY ADDRESS2
2 147_483_647

‘o

NO_SUCH_FIXED_TYPE

LONG_LONG_FLOAT

LA (]

"CANNOT RESTRICT FILE_CAPACITY"

75_000.0

$GREATER _THAN DURATION_BASE_LAST 131 073.0

$GREATER THAN_FLOAT_ BASE_LAST

SGREATER_THAN FLOAT SAFE_LARGE

1.80141E+38

1.7014117E+38

$GREATER_THAN_ SHORT FLOAT_SAFE_LARGE 1.0E308

SHIGH_PRIORITY

15

A-2

$ILLEGAL_EXTERNAL FILE NAME1
S$ILLEGAL EXTERNAL_FILE NAME2
$INAPPROPRIATE_LINE_LENGTH
$INAPPROPRIATE PAGE_LENGTH
S$INCLUDE_PRAGMA1l
SINCLUDE_PRAGMA?
$INTEGER_FIRST
$INTEGER_LAST
SINTEGER_LAST_PLUS_1
S$INTERFACE_LANGUAGE

S$LESS_THAN_DURATION

BAD/CHAR"@. ~!
X"&(1..256=>/c’)&"y

-1

-1

PRAGMA INCLUDE ("A28006D1.TST")
PRAGMA INCLUDE ("B28006El.TST")
~2147483648

2147483647

2 147_483_648

c

-75_000.0

$LESS_THAN_DURATION BASE _FIRST -131_073.0

SLINE_TERMINATOR
$LOW_PRIORITY
$MACHINE_CODE_STATEMENT
$MACHINE_CODE_TYPE
$MANTISSA_DOC
$MAX_DIGITS

$MAX_INT

$MAX_INT_ PLUS_1
$MIN_INT

$NAME

$NAME_LIST

SNAME SPECIFICATION1

SNAME SPECIFICATION2

’ ’

0

NULL;

NO_SUCH_TYPE

31

33

2147483647

2 147_483_648

-2147483648

SHORT_SHORT _INTEGER

VAX_VMS, VAXELN, OPENVMS_AXP,RISC_ULTR
IX,MIL_STD_1750A,MC68000,MC68020,MC6
8040,CPU32

DISKSIPSE: [000000]X2120A. ;1

DISKSIPSE: [000000}X2120B.;1

A-3

$NAME_SPECIFICATION3 DISK$IPSE: (000000)X3119A. ;1
$NEG_BASED_INT 16#FFFIFFFE#
$NEW_MEM_SIZE 1_048_576

$NEW_STOR_UNIT 8

$NEW_SYS_NAME | VAX_VMS

SPAGE_TERMINATOR ' '

$RECORD_DEFINITION RECORD NULL; END RECORD;
$RECORD_NAME NO_SUCH_MACHINE_CODE_TYPE
$TASK_SIZE 32

$TASK_STORAGE_SIZE 0

$TICK 10.0%* (=2)
$VARIABLE_ADDRESS FCNDECL.VARIABLE_ADDRESS
SVARIABLE_ADDRESS1 FCNDECL.VARIABLE_ADDRESS1
$VARTABLE_ADDRESS?2 FCND: °L.VARIABLE_ADDRESS2
$YOUR_PRAGMA EXPORT OBJECT

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted

otherwise, references in this appendix are to compiler documentation and
not to this report.

Compiler options for DEC Ada hosted on OpenVMS VAX and OpenvMS AXp

systems

The default compiler options were used except as follows:

1.

2.

/LIST was used to produce compiler listings.

/NODEBUG was used to inhibit the generation of debugging
information in the object file since such information is not
relevant to validation.

/ERROR_LIMIT=1000 was used since more than 30 errors are
diagnosed for some validation tests.

/NOSHOW was used to exclude portability information from the
compiler listings

The DEC Ada compiler options and defaults for OpenvMS VAX and OpenVMS
AXP systems are summarized as follows:

o]

/ANALYSIS_DATA or /NOANALYSIS_DATA

Controls whether a ‘ata analysis file containing source code
cross-referencing and static analysis information is created.
The default is /NOANALYSIS_DATA.

/CHECK or /NOCHECK

Controls whether run-time error checking is suppressed. (Use
of /NOCHECK 1is equivalent to giving all possible suppress
pragmas in the source program.) The default is /CHECK (error
checking is not suppressed except by pragma) .

/COPY_SOURCE or /NOCOPY_SOURCE

Controls whether the source being compiled is copied into the
compilation library for a successful compilation. The
default is /COPY_SOURCE.

/DEBUG or /NODEBUG or /DEBUG=option

where option is one of

ALL, SYMBOLS or NOSYMBOLS, TRACEBACK or NOTRACEBACK, or NONE

Controls the inclusion of debugging symbol table information
in the compiled object module. The default is /DEBUG or,
equivalently, /DEBUG=~ALL.

/DESIGN or /NODESIGN

Controls whether the input file is processed as a design or
compiled as an Ada source. The default is /NODESIGN, in

which case the file is compiled.

/DIAGNOSTICS, /DIAGNOSTICS=file-name, or /NODIAGNOSTICS
Controls whether a special diagnostics file is produced for
use with the VAX Language-Sensitive Editor (a separate
DIGITAL product). The default is /NODIAGNOSTICS.
/ERROR_7,IMIT=n

Controls the number of error 1level diagnostics that are
allowed within a single compilation unit before the
compilation is aborted. The default is /ERROR_LIMIT=30.
/LIBRARY=directory-name

Specifies the name 5f the Ada compilation library to be used
as the context for the compilation. The default is the
library last established by the ACS SET LIBRARY command.
/LIST, /LIST=file-name, or /NOLIST

Controls whether a listing file is produced. /LIST without a

file-name uses a default file~-name of the form
sourcename.LIS, where sourcename is the name of the source
file being compiled. The default is /NOLIST (for both

interactive and batch mode).
/LOAD or /NOLOAD

Controls whether the current program library is updated with
successfully processed units contained in the source file.
The default is /LOAD,

/MACHINE_CODE or /NOMACHINE_CODE

Controls whether generated machine code (approximating
assembler notation) is included in the 1listing file, if
produced. The default is /NOMACHINE_CODE.

/NOTE_SOURCE or /NONOTE_SOURCE

Controls whether the file specification of the current socurce
file is noted in the compilation library. (This copy is used
for certain automated (re)compilation features.) The default
is /NOTE_SOURCE.

/OPTIMIZE or /NOOPTIMIZE
Controls whether full or minimal optimization is applied in

producing the compiled code. The default is /OPTIMIZE.
{(/NOOPTIMIZE is primarily of use in combination with /DEBUG.)

O

/SYNTAX_ONLY or /NOSYNTAX ONLY

Controls whether a syntax check only 1is performed. The
default is /NOSYNTAX_ONLY, which indicates that full
processing is done.

/SHOW=PORTABILITY or /NOSHOW

Controls whether a portability summary is included in the
listing. The default is /SHOW=PORTABILITY.

/WARNINGS= {category:destination, ...)

Specifies which categories of informational and warning level
messages are displayed for which destinations. The
categories can be WARNINGS, WEAK_WARNINGS, SUPPLEMENTAL,
COMPILATION NOTES and STATUS. The destinations can be ALL,
NONE or combinations of TERMINAL, LISTING or DIAGNOSTICS.
The default is

/WARNINGS= (WARN:ALL, WEAK:ALL, SUPP:ALL, COMP:NONE, STAT:LIST)

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

1.

4.

The options and defaults

below.

_

'Linker options for DEC Ada hosted
systems

DEC Ada programs are linked using the
ACS LINK options were used except as follows:

/COMMAND was used. ACS LINK
program are
executable image using the
command file is invoked
linked. If /COMMAND is

written but not invoked.

VMS
in

on OpenVMS VAX

"ACS LINK"

checks
current and writes a command file to create the

linker.
a subprocess and the image is
specified,
For validation,

and OpenvVMS AXP

command. The default

that all wunits in a

By default, this

the command file is

/COMMAND was used,

and the generated command file was invoked after the ACS LINK

command to do the actual ink.
overhead of spawning a

validation test.

/NOTRACE was
information

specified to

from the image file

subprocess

exclude

This
for

approach saves the
each executable

traceback symbol
since this information is

only relevant when debugging programs.

/EXECUTABLE was used to specify the
image file.

For VAXELN targets only,
linking Ada

for

/COMMAND=file-name

Write a command file create the executable

name of the executable

/SYSTEM_NAME=VAXELN was used.

programs are summarized

image using the

VMS linker but do not invoke this commmand file.

/DEBUG or /NODEBUG

Controls whether a debugger symbol table is included
The default is /NODEBUG.

executable image.
/EXECUTARLE, /EXECUTABLE-~file-name,
Controls whether the linker creates
and optionally provides the name of
/EXECUTABLE.

/LOG or /NOLOG

wheter a 1list of all
The default is /NOLOG.

Controls
displayed.

/MAIN or /NOMAIN

Specifies whether the main Ada unit

in the

or /NOEXECUTABLE

an executable image file

the file. The default is
units in the image is
is the main program. The

-

default is /MAIN which indicates that the main Ada unit is
the main program.

o /MApP, /MAP=file-name, or /NOMAP
Controls whether the linker creates an image map listing
file. The default is /NOMAP. If /MAP is specified, some

other options can be specified to control the level of detail
in the map listing file.

o /ouTPUT=file-name

If specified, requests that output be written to a file other
than to the standard output device.

o /SYSLIB or /NOSYSLIB

Controls whether the 1linker automatically searches the
default system library for unresolved references. By
default, it is automatically searched.

o /SYSSHR or /NOSYSSHR

Controls whether the 1linker automatically searches the
default system shareable image 1library for unresolved
references. By default, it is automatically searched.

o /SYSTEM_NAME=system

Directs the program library manager to produce an image for
execution on a particular operating system. On VAX systems,
the possible values are VAX_VMS or VAXELN. On AXP systems,
the only value supported is OpenVMS_AXP.

If /SYSTEM_NAME is not specified, the setting of the pragma
SYSTEM_NAME determines the target environment.

o /TRACEBACK or /NOTRACEBACK

Controls whether subprogram traceback information is included
in the executable image for run-time error reporting. The
default is /TRACEBACK.

o /USERLIBRARY=-{(table,...) or /NOUSERLIBRARY

Controls whether the linker searches any user-defined default
libraries for unresolved external symbols. By default, the
linker searches process, group, and system logical name
tables for user-defined library definitions.

Additional options are provided that control whether the link is done
while the user waits or 1is done in a background mode. Using one
option or the other has no effect on the executable image that |is
generated.

_»

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648..2147483647;
type LONG_INTEGER is range -2147483648..2147483647;
type SHORT_INTEGER is range =~32768..32768;

type SHORT_SHORT_INTEGER is range -128..127;

type FLOAT is digits 6 range -1.70141E+38..1.70141E+38;
type LONG FLOAT is digits 15 range
-8.988465674312E+307..8,.988465674312E+307;
type LONG_LONG_FLOAT is digits 33 range
-5.9486574767861588254287966331400E+4921..
5.9486574767861588254287966331400E+4931;

type DURATION is delta 1.0E-4 range -131072.0..131071.9999;

end STANDARD;

B

Predefined Language Pragmas

This annex defines the pragmas LIST, PAGE, and OPTIMIZE, and summarizes
the definitions given elsewhere of the remaining language-defined pragmas.

The DEC Ada pragmas IDENT and TITLE are also defined in this annex.

Pragma
AST_ENTRY

COMMON_OBJECT

Meaning
On VMS systems only.

Takes the simple name of a single
entry as the single argument; at most
one AST_ENTRY pragma is allowed
for any given entry. This pragma
must be used in combination with the
AST_ENTRY attribute, and is only
allowed after the entry declaration and
in the same task type specification or
single task as the entry to which it
applies. This pragma specifies that the
given entry may be used to handle a
VMS asynchronous system trap (AST)
resulting from a VMS system service
call. The pragma does not affect
normal use of the entry (see 9.12a),

Takes an internal name denoting
an object, and optionally takes an
external designator (the name of a
linker storage area) and a size as
arguments. This pragma is only
allowed at the place of a declarative
item, and must apply to a variable
declared by an earlier declarative
item of the same declarative part or

2

COMPONENT_ALIGNMENT

CONTROLLED

package specification. The variable
must have a size that is known at
compile time, and it must not require
implicit initialization. This pragma is
not allowed for objects declared with
a renaming declaration. This pragma
enables the shared use of objects that
are stored in overlaid storage areas
(see 13.9a.2.3).

Takes an alignment choice and
optionally the simple name of an array
or record type as arguments. When no
simple name is specified, the pragma
must occur within a declarative part or
package specification, and the effect of
the pragma extends to types declared
from the place of the pragma to the
end of the innermost declarative part
or package specification in which

the pragma was declared. When a
simple name is specified, the pragma
and the type declaration must both
occur immediately within the same
declarative part, package specification,
or task specification; the declaration
must occur before the pragma. The
position of the pragma and the
restrictions on the named type are
governed by the same rules as those for
a representation clause. This pragma
specifies the kind of alignment used for
the components of the array or record
types to which it applies (see 13.1a).

Takes the simple name of an access
type as the single argument. This
pragma is only allowed immediately -
within the declarative part or package
specification that contains the
declaration of the access type; the
declaration must occur before the
pragma. This pragma is not allowed for
a derived type. This pragma specifies

B-2

8-3

3

ELABORATE

EXPORT_EXCEPTION

that automatic storage reclamation
must not be performed for objects
designated by values of the access type,
except upon leaving the innermost
block statement, subprogram body, or
task body that encloses the access type
declaration, or after leaving the main
program (see 4.8).

Takes one or more simple names
denoting library units as arguments.
This pragma is only allowed
immediately after the context clause
of a compilation unit (before the
subsequent library unit or secondary
unit). Each argument must be

the simple name of a library unit
mentioned by the context clause.
This pragma specifies that the
corresponding library unit body
must be elaborated before the

given compilation unit. If the given
compilation unit is a subunit, the
library unit body must be elaborated
before the body of the ancestor library
unit of the subunit (see 10.5).

On VMS systems only.

Takes an internal name denoting an
exception, and optionally takes an
external designator (the name of a
linker global symbol), a form (ADA
or VMS), and a code (a static integer
expression that is interpreted as a
condition code) as arguments. A code
value must be specified when the
form is VMS (the default if the form -
is not specified). This pragma is only
allowed at the place of a declarative
item, and must apply to an exception
declared by an earlier declarative
item of the same declarative part

or package specification; it is not

EXPORT_FUNCTION

EXPORT_OBJECT

allowed for an exception declared

with a renaming declaration or for an
exception declared in a generic unit.
This pragma permits an Ada exception
to be handled by programs written in
another programming language (see
13.9a.3.2).

Takes an internal name denoting

a function, and optionally takes an
external designator (the name of a
linker global symbol), parameter types,
result type, parameter mechanisms,
and result mechanism as arguments,
This pragma is only allowed at the
place of a declarative item, and

must apply to a function declared

by an earlier declarative item of the
same declarative part or package
specification. In the case of a function
declared as a compilation unit, the
pragma is only allowed after the
function declaration and before

any subsequent compilation unit.
This pragma is not allowed for a
function declared with a renaming
declaration, and it is not allowed for a
generic function (it may be given for
a generic instantiation). This pragma
permits an Ada function to be called
from a program written in another
programming language (see 13.9a.1.3).

Takes an internal name denoting an
object, and optionally takes an external
designator (the name of a linker global
symbol) and size option (a linker
absolute global symbol that will be
defined in the object module—useful
on VMS systems only) as arguments.
This pragma is only allowed at the
place of a declarative item, and must
apply to a constant or a variable
declared by an earlier declarative

EXPORT_PROCEDURE

EXPORT_VALUED_PROCEDURE

item of the same declarative part or
package specification; the declaration
must occur at the outermost level of a
library package specification or body.
The object to be exported must have
a size that is known at compile time.
This pragma is not allowed for objects
declared with a renaming declaration,
and is not allowed in a generic unit.
This pragma permits an Ada object to
be referred to by a routine written in
another programming language (see
13.9a.2.2).

Takes an internal name denating

a prucedure, and optionally takes

an external designator (the name of
a linker global symbol), parameter
types, and parameter mechanisms

as arguments. This pragma is only
allowed at the place of a declarative
item, and must apply to a procedure
declared by an earlier declarative
item of the same declarative part or
package specification. In the case of a
procedure declared as a compilation
unit, the pragma is only allowed
after the procedure declaration and
before any subsequent compilation
unit. This pragma is not allowed for
a procedure declared with a renaming
declaration, and is not allowed for a
generic procedure (it may be given for
a generic instantiation). This pragma
permits an Ada routine to be called
from a program written in another
programming language (see 13.9a.1.3).

Takes an internal name denoting

a procedure, and optionally takes
an external designator (the name of
a linker global symbol), parameter
types, and parameter mechanisms
as arguments. This pragma is only

FLOAT_REPRESENTATION

IDENT

allowed at the place of a declarative
item, and must apply to a procedure
declared by an earlier declarative item
of the same declarative part or package
specification. In the case of a procedure
declared as a compilation unit, the
pragma is only allowed after the
procedure declaration and before any
subsequent compilation unit. The first
(or only) parameter of the procedure
must be of mode out. This pragma is
not allowed for a procedure declared
with a renaming declaration and is not
allowed for a generic procedure (it may
be given for a generic instantiation).
This pragma permits an Ada procedure
to behave as a function that both
returns a value and causes side effects
on its parameters when it is called
from a routine written in another
programming language (see 13.9a.1.3).

On VMS systems only.

On VMS VAX systems, takes VAX _
FLOAT as the single argument. On
VMS AXP systems, takes either
VAX_FLOAT or [EEE_FLOAT as
the single argument; the default is
VAX_FLOAT. This pragma is only
allowed at the start of a compilation,
before the first compilation unit (if
any) of the compilation. It specifies
the choice of representation to be
used for the predefined floating point
types in the packages SYSTEM and
STANDARD. (see 3.5.7a).

Takes a string literal of 31 or fewer
characters as the single argument. The
pragma IDENT has the following form:

pragma IDENT (string literal):

IMPORT_EXCEPTION

IMPORT_FUNCTION

This pragma is allowed only in

the outermost declarative part or
declarative items of a compilation unit.
The given string is used to identify
the object module associated with the
compilation unit in which the pragma
IDENT occurs.

On VMS systems only.

Takes an internal name denoting an
exception, and optionally takes an
external designator (the name of a
linker global symbol), a form (ADA

or VMS), and a code {a static integer
expression that is interpreted as a
condition code) as arguments. A code
value is allowed only when the form
is VMS (the default if the form is

not specified). This pragma is only
allowed at the place of a declarative
item, and must apply to an exception
declared by an earlier declarative item
of the same declarative part or package
specification; it is not allowed for an
exception declared with a renaming
declaration. This pragma permits a
non-Ada exception (most notably, a
VMS condition) to be handled by an
Ada program (see 13.9a.3.1).

Takes an internal name denoting

a function, and optionally takes an
external designator (the name of a
linker global symbol), parameter types,
result type, parameter mechanisms,
and result mechanism as arguments.
On VMS systems, a first optional
parameter is also available as an
argument. The pragma INTERFACE
must be used with this pragma

(see 13.9). This pragma is only allowed
at the place of a declarative item, and
must apply to a function declared

IMPORT_OBJECT

IMPORT_PROCEDURE

by an earlier declarative item of the
same declarative part or package
specification. In the case of a function
declared as a compilation unit, the
pragma is only allowed after the
function declaration and before any
subsequent compilation unit. This
pragma 1s allowed for a function
declared with a renaming declaration;
it is not allowed for a generic function
or a generic function instantiation.
This pragma permits a non-Ada
routine to be used as an Ada function
(see 13.9a.1.1).

Takes an internal name denoting

an object, and optionally takes an
external designator (the name of a
linker global symbol) and size (a linker
absolute global symbol that will be
defined in the object module—useful
on VMS systems only) as arguments.
This pragma is only allowed at the
place of a declarative item, and

must apply to a variable declared

by an earlier declarative item of the
same declarative part or package
specification. The variable must have
a size that is known at compile time,
and it cannot have an initial value.
This pragma is not allowed for objects
declared with a renaming declaration.
This pragma permits storage declared
in a non-Ada routine to be referred to
by an Ada program (see 13.9a.2.1).

Takes an internal name denoting

a procedure, and optionally takes

an external designator (the name of

a linker global symbol), parameter
types, and parameter mechanisms

as arguments. On VMS systems,

a first optional parameter is also
available as an argument. The pragma

B-8

IMPORT_VALUED_PROCEDURE

INTERFACE must be used with this
pragma (see 13.9). This pragma is only
allowed at the place of a declarative
item, and must apply to a procedure
declared by an earlier declarative

item of the same declarative part or
package specification. In the case of a
procedure declared as a compilation
unit, the pragma is only allowed after
the procedure declaration and before
any subsequent compilation unit. This
pragma is allowed for a procedure
declared with a renaming declaration;
it is not allowed for a generic procedure
or a generic procedure instantiation.
This pragma permits a non-Ada routine
to be used as an Ada procedure

(see 13.9a.1.1).

Takes an internal name denoting

a procedure, and optionally takes

an external designator (the name of

a linker global symbol), parameter
types, and parameter mechanisms

as arguments. On VMS systems,

a first optional parameter is also
available as an argument. The pragma
INTERFACE must be used with this
pragma (see 13.9). This pragma is only
allowed at the place of a declarative
item, and must apply to a procedure
declared by an earlier declarative item
of the same declarative part or package
specification. In the case of a procedure
declared as a compilation unit, the
pragma is only allowed after the
procedure declaration and before any’
subsequent compilation unit. The first
(or only) parameter of the procedure
must be of mode out. This pragma

is allowed for a procedure declared
with a renaming declaration; it is not
allowed for a generic procedure. This

a4

INLINE

INLINE_GENERIC

pragma permits a non-Ada routine that
returns a value and causes side effects

on its parameters to be used as an Ada
procedure (see 13.9a.1.1).

Takes one or more names as
arguments; each name is either the
name of a subprogram or the name of
a generic subprogram. This pragma

is only allowed at the place of a
declarative item in a declarative part
or package specification, or after a
library unit in a compilation, but before
any subsequent compilation unit. This
pragma specifies that the subprogram
bodies should be expanded inline at
each call whenever possible; in the casze
of a generic subprogram, the pragma
applies to calls of its instantiations

(see 6.3.2).

Takes one or more names as
arguments; each name is either the
name of a generic declaration or the
name of an instance of a generic
aeclaration. This pragma is only
allowed at the place of a declarative
item in a declarative part or package
specification, or after a library unit
in a compilation, but hefore any
subsequent compilation unit. Each
argument must be the simple name
of a generic subprogram or package,
or a (nongeneric) subprogram or
package that is an instance of a generic
subprogram or package declared by
an earlier declarative item of the
same declarative part or package
specification. This pragma specifies
that inline expansion of the generic
body is desired for each instantiation
of the named generic declarations or
of the particular named instances:
the pragma does not apply to calls of

B-10

5

INTERFACE

INTERFACE_NAME

instances of generic subprograms
(see 12.1a).

Takes a language name and a
subprogram name as arguments. This
pragma is allowed at the place of a
declarative item, and must apply in
this case to a subprogram declared

by an earlier declarative item of the
same declarative part or package
specification. This pragma is also
allowed for a library unit; in this case
the pragma must appear after the
subprogram declaration, and before
any subsequent compilation unit. This
pragma specifies the other language
(and thereby the calling conventions)
and informs the compiler that an
object moduie will be supplied for the
corresponding subprogram (see 13.9).

In DEC Ada, the pragma INTERFACE
is required in combination with the
pragmas IMPORT_FUNCTION,
IMPORT_PROCEDURE, and
IMPORT_VALUED_PROCEDURE
when any of those pragmas are used
(see 13.9a.1).

Takes an internal name and an
external name as arguments. The
internal name may be an Ada simple
name that denotes a subprogram or
an object. If the declared entity is a
function, the internal name may be a
string literal that denotes an operator
symbol. The external name may be any
string literal; the literal is used as a -
linker global symbol that is associated
with the external subprogram or
object. This pragma is only allowed
at the place of a declarative item,
and must apply to an entity declared
by an earlier declarative item of the

6

LIST

LONG_FLOAT

same declarative part or package
specification.

If this pragma applies to a subprogram,
then the pragma INTERFACE must
also apply (see 13.9). If a subprogram
has been declared as a compilation
unit, the pragma is only allowed after
the subprogram declaration and before
any subsequent compilation unit. This
pragma is allowed for subprograms
declared with a renaming declaration.
This pragma is not allowed for a
generic subprogram or a generic
subprogram instantiation.

If this pragma applies to an object,
then the size of the object must be
known at compile time. This pragma is
not allowed for an the object declared
with a renaming declaration.

This pragma associates an external
symbol with the internal Ada name for
a subprogram or object (see 13.9b).

Takes one of the identifiers ON or
OFF as the single argument. This
pragma is allowed anywhere a pragma
is allowed. It specifies that listing of
the compilation is to be continued or
suspended until a LIST pragma with
the opposite argument 1s given within
the same compilation. The pragma
itself is always listed if the compiler is
producing a listing.

On VMS systems only. Also, the
value of the pragma FLOAT_
REPRESENTATION must be VAX_
FLOAT.

7

B-13

MAIN_STORAGE

MEMORY_SIZE

Takes either D_FLOAT or G_FLOAT
as the single argument. The defaulc
is G_FLOAT. This pragma is only
allowed at the start of a compilation,
before the first compilation unit

(if any) of the compilation. It specifies
the choice of representation to be used
for the predefined type LONG_FLOAT
in the package STANDARD, and for
floating point type declarations with
digits specified i:: the range 7 .. 15
(see 3.5.7b).

On VMS VAX systems only.

Takes one or two nonnegative static
simple expressions of some integer type
as arguments. This pragma is only
allowed in the outermost declarative
part of a library subprogram; at most
one such pragma is allowed in a library
subprogram. It has an effect only when
the subprogram to which it applies is
used as a main program. This pragma
causes a fixed-size stack to be created
for a main task (the task associated
with a main program), and determines
the number of storage units (bytes)

to be allocated for the stack working
storage area or guard pages or both.
The value specified for either or both
the working storage area and guard
pages is rounded up to an integral
number of pages. A value of zero for
the working storage area results in the
use of a default size; a value of zero for
the guard pages results in no guard
storage. A negative value for either -
working storage or guard pages causes
the pragma to be ignored (see 13.2b}.

Takes a numeric literal as the single
argument. This pragma is only allowed
at the start of a compilation, before the

OPTIMIZE

PRIORITY

first compilation unit (if any) of the
compilation. The effect of this pragma
is to use the value of the specified
numeric literal for the definition of the
named number MEMORY_SIZE

(see 13.7).

Takes one of the identifiers TIME

or SPACE as the single argument.
This pragma is only allowed within a
declarative part and it applies to the
block or body enclosing the declarative
part. It specifies whether time or space
is the primary optimization criterion.

In DEC Ada, this pragma is only
allowed immediately within a
declarative part of a body declaration.

Takes the simple name of a record or
array type as the single argument. The
allowed positions for this pragma, and
the restrictions on the named type,

are governed by the same rules as for
a representation clause. The pragma
specifies that storage minimization
should be the main criterion when
selecting the representation of the
given type (see 13.1).

This pragma has no argument, and is
allowed anywhere a pragma is allowed.
It specifies that the program text which
follows the pragma should start on a
new page (if the compiler is currently
producing a listing).

Takes a static expression of the
predefined integer subtype PRIORITY
as the single argument. This pragma is
only allowed within the specification of
a task unit or immediately within the
outermost declarative part of a main
program, It specifies the priority of the

B-14

task (or tasks of the task type) or the
priority of the main program (see 9.8).

PSECT_OBJECT On VMS systems only.

Has the same syntax and the same
effect as the pragma COMMON_
OBJECT (see 13.9a.2.3).

12 SHARED Takes the simple name of a variable as
the single argument. This pragma is
allowed only for a variable declared by
an object declaration and whose type
is a scalar or access type; the variable
declaration and the pragma must
both occur (in this order) immediately
within the same declarative part or
package specification. This pragma
specifies that every read or update of
the variable is a synchronization point
for that variable. An implementation
must restrict the objects for which
this pragma is allowed to objects
for which each of direct reading and
direct updating is implemented as an
indivisible operation (see 9.11).

SHARE_GENERIC On VMS systems only.

Takes one or more name " as
arguments; each name is either the
name of a generic declaration or the
name of an instance of a generic
declaration. This pragma is only
allowed at the place of a declarative
item in a declarative part or package
specification, or after a library unit in a
compilation, but before any subsequent
compilation unit. Each argument
either must be the simple name of a
generic subprogram or package, or it
must be a (nongeneric) subprogram

or package that is an instance of a
generic subprogram or package. If the
argument is an instance of a generic

B8-15

STORAGE_UNIT

SUPPRESS

subprogram or package, then it must
be declared by an earlier declarative
item of the same declarative part or
package specification. This pragma
specifies that generic cod: sharing is
desired for each instantiation of the
named generic declarations or of the
particular named instances (see 12.1b).

Takes a numeric literal as the single
argument. This pragma is only allowed
at the start of a compilation, before the
first compilation unit (if any) of the
compilation. The effect of this pragma
is to use the value of the specified
numeric literal for the definition of the
named number STORAGE_UNIT

(see 13.7).

In DEC Ada, the only argument
allowed for this pragma is 8 (bits).

Takes as arguments the identifier

of a check and optionally also the
name of either an object, a type or
subtype, a subprogram, a task unit, or
a generic unit. This pragma is only
allowed either immediately within a
declarative part or immediately within
a package specification. In the latter
case, the only allowed form is with a
name that denotes an entity {or several
overloaded subprograms) declared
immediately within the package
specification. The p. "mission to omit
the given check extends from the

place of the pragma to the end of the
declarative region associated with the
innermost enclosing block statement or
program unit. For a pragma given in a
package specification, the permission
extends to the end of the scope of the
named entity.

15

B-17

SUPPRESS_ALL

SYSTEM_NAME

TASK_STORAGE

If the pragma includes a name, the
permission to omit the given check

is further restricted: it is given only
for operations on the named object

or on all objects of the base type of a
named type or subtype; for calls of a
named subprogram; for activations of
tasks of the named task type; or for
instantiations of the given generic unit
(see 11.7).

This pragma has no argument and is
only allowed following a compilation
unit. This pragma specifies that

all run-time checks in the unit are
suppressed (see 11.7).

Takes an enumeration literal as the
single argument. This pragma is only
allowed at the start of a compilation,
before the first compilation unit

(if any) of the compilation. The effect of
this pragma is to use the enumeration
literal with the specified identifier

for the definition of the constant
SYSTEM_NAME. This pragma is

only allowed if the specified identifier
corresponds to one of the literals of the
type NAME declared in the package
SYSTEM (see 13.7).

Takes the simple name of a task

type and a static expression of some
integer type as arguments. This
pragma is allowed anywhere that a
task storage specification is allowed;
that is, the declaration of the task
type to which the pragma applies and
the pragma must both occur (in this
order) immediately within the same
declarative part, package specification,
or task specification. The effect of
this pragma is to use the value of the
expression as the number of storage

TIME_SLICE

TITLE

units (bytes) to be allocated as guard
storage. The value is rounded up to
an appropriate boundary. A negative
value causes the pragma to be ignored.
A zero value has system-specific
results: on VMS VAX systems, a value
of zero results in no guard storage;

on VMS AXP and ULTRIX systems,

a value of zero results in a minimal
guard area (see 13.2a).

On VMS systems only.

Takes a static expression of the
predefined fixed point type DURATION
(in the package STANDARD) as the
single argument. This pragma is only
allowed in the outermost declarative
part of a library subprogram, and at
most one such pragma is allowed in a
library subprogram. It has an effect
only when the subprogram to which

it applies is used as a main program.
This pragma causes the task scheduler
to turn time slicing on or off and, on
some systems, to limit the amount of
continuous execution time given to a
task

(see 9.8a; see also the appropriate
run-time reference manual for
implementation differences across
systems).

Takes a title or a subtitle string, or
both, as arguments. The pragma
TITLE has the following form:

pragma TITLE (titling-option
[,titling-option]);
titling-option :=
[TITLE =>] string_literal
| [SUBTITLE =>] string literal

8-18

B-19

VOLATILE

This pragma is allowed anywhere a
pragma is allowed; the given strings
supersede the default title and/or
subtitle portions of a compilation
listing.

Takes the simple name of a variable
as the single argument. This pragma
is only allowed for a variable declared
by an object declaration. The variable
declaration and the pragma must
both occur (in this order) immediately
within the same declarative part or
package specification. The pragma
must appear before any occurrence of
the name of the variable other than
in an address clause or in one of the
DEC Ada pragmas IMPORT _OBJECT,
EXPORT_OBJECT, COMMON_
OBJECT, or PSECT_OBJECT. The
variable cannot be declared by a
renaming declaration. The pragma
VOLATILE specifies that the variable
may be modified asynchronously. This
pragma instructs the compiler to obtain
the value of a variable from memory
each time it is used (see 9.11).

F

Implementation-Dependent Characteristics

Note

This appendix is not part of the standard definition of the Ada
programming language.

This appendix summarizes the implementation-dependent characteristics of
DEC Ada by presenting the following:

L]

e

Lists of the DEC Ada pragmas and attributes.
The specifications of the package SYSTEM.
The restrictions on representation clauses and unchecked type conversions.

The conventions for names denoting implementation-dependent
components in record representation clauses.

The interpretation of expressions in address clauses.

The implementation-dependent characteristics of the input-output
packages.

Other implementation-dependent characteristics.

See the relevant run-time reference manual for additional implementation-
specific details.

F.1 Implementation-Dependent Pragmas

DEC Ada provides the following pragmas, which are defined elsewhere in the
text. In addition, DEC Ada restricts the predefined language pragmas INLINE
and INTERFACE. See Annex B for a descriptive pragma summary.

Implementation-Dependent Pragmas F.1

DEC Ada systems

Pragma on which it applies Section
AST_ENTRY OpenVMS 9.12a
COMMON_OBJECT Al 13.9a.2.3
COMPONENT_ALIGNMENT All 13.1a
EXPORT_EXCEPTION OpenVMS 13.9a.3.2
EXPORT_FUNCTION All 13.9a.1.3
EXPORT _OBJECT All 13.9a.2.2
EXPORT_PROCEDURE Al 139a.1.3
EXPORT_VALUED_PROCEDURE All 13.9a.1.3
FLOAT_REPRESENTATION OpenVMS 3.5.7a
IDENT Al Annex B
IMPORT_EXCEPTION OpenVMS 13.9a.3.1
IMPORT_FUNCTION All 13.9a.1.1
IMPORT_OBJECT All 139a.2.1
IMPORT_PROCEDURE All 13.9a.1.1
IMPORT_VALUED_PROCEDURE All 139a1.1
INLINE_GENERIC Al 12.1a
INTERFACE_NAME Al 13.9b
LONG_FLOAT OpenVMS 3.5.7b
MAIN_STORAGE OpenVMS VAX 13.2b
PSECT_OBJECT OpenVMS 13.9a2.2.3
SHARE_GENERIC OpenVMS 12.1b
SUPPRESS_ALL All 11.7
TASK_STORAGE Al 13.2a
TIME_SLICE OpenVMS 9.8a
TITLE All Annex B
VOLATILE All 9.11

F.2 Implementation-Dependent Attributes

DEC Ada provides the following attributes, which are defined elsewhere in the
text. See Annex A for a descriptive attribute summary.

F.2 implementation-Dapendent Attributes F-2

DEC Ada systems

Attribute on which it applies Section
AST ENTRY OpenVMS 9.12a
BIT All 13.7.2
MACHINE_SIZE All 13.7.2
NULL_PARAMETER All 13.9a.1.2
TYPE_CLASS Al 13.7a.2

F.3 Specification of the Package System

DEC Ada provides a system-specific version of the package SYSTEM for
each system on which it is supported. The individual package SYSTEM
specifications appear in the following sections.

F.3.1 The Package System on OpenVMS VAX Systems
package SYSTEM is

type NAME is

-- DEC Ada implementations

(VAX VMS, VAXELN, OpenVMS AXP, RISC_ULTRIX,

-- ¥D Ada implementations

MIL STD 1750A, MC68000, MC68020, MC68040, CPU32);
for NAME use (1, 2, 7, 8, 101, 102, 103, 104, 105);

SYSTEM NAME : constant NAME := VAX VMS;
STORAGE UNIT : constant := §;

MEMORY SIZE : constant := 2*¥*31-1;
MAX INT : constant := 2**3]1-1;
MIN INT : constant ;= -(2*%*31);
MAX DIGITS : constant := 33;

MAX MANTISSA : constant := 31,

FINE DELTA : constant := 2.0**(~31);
TICK : constant := 10.0%*(=2);

subtype PRIORITY is INTEGER range 0 .. 15;

type INTEGER 8 is range -128 .. 127;
for INTEGER 8'SIZE use 8;

type INTEGER 16 is range -32 768 .. 32_767;
for INTEGER 16’ SIZE use 16;

type INTEGER 32 is range -2 147 483 648 .. 2 147 483_647;
for INTEGER 32'SIZE use 32;

type LARGEST INTEGER is range MIN INT .. MAX INT;

F-3 The Package System on OpenVMS VAX Systems F.3.1

-- Address type

type ADDRESS is private;

ADDRESS ZERO : constant ADDRESS;
NO_ADDR : constant ADDRESS;
NULL ADDRESS : constant ADDRESS;

-- Note that because ADDRESS is a private type
-- the functions "=" and "/=" are already available and
-- do not have to be explicitly defined

-- function "=" (LEFT, RIGHT : ADDRESS} return BOOLEAN;
-- function "/=" (LEFT, RIGHT : ADDRESS} return BOOLEAN;
function "<" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function "<=" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function ">" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function ">=" (LEFT, RIGHT : ADDRESS) return BOOLEAN;

generic
type TARGET is private;
function FETCH FROM ADDRESS (A : ADDRESS) return TARGET;

generic
type TARCET is private;
procedure ASSIGN TO ADDRESS (A : ADDRESS; T : TARGET);

-- DEC ada floating point type declarations for the VAX
-- floating point data types

type F_FLOAT is {digits 6};
type D FLOAT is (digits 9};
type G_FLOAT is (digits 15};
type H_FLOAT is {digits 33},

type TYPE CLASS is (TYPE CLASS ENUMERATION,
TYPE_CLASS INTEGER,
TYPE_CLASS_FIXED POINT,
TYPE_ CLASS_FLOATING_POINT,
TYPE_CLASS_ARRAY,
TYPE_CLASS_RECORD,
TYPE_CLASS_ACCESS,
TYPE CLASS TASK,
TYPE_CLASS_ADDRESS) ;

-- AST handler type
type AST HANDLER is limited private;
NO_AST HANDLER : constant AST HANDLER;
-~ Non-Ada exception
NON_ADA ERROR : exception;

-~ Bardware-oriented types and functions

¥.3.1 The Package System on OpenVMS VAX Systems

F-4

type BIT .

ARRAY is array (INTEGER range <>) of BOOLEAN;

pragma PACK(BIT ARRAY) ;

subtype BIT ARRAY 8 is BIT ARRAY (0 .. 7);
subtype BIT ARRAY 16 is BIT ARRAY (0 .. 15);
subtype BIT ARRAY 32 is BIT_ARRAY (0 .. 31);
subtype BIT ARRAY 64 is BIT ARRAY (0 .. 63);

type UNSIGNED BYTE is range 0 .. 255;
for UNSIGNED | BYTE' SIZE use 8;

function
function
function
function

function
function

function
function
function
function

function
function

function
function
function
function

function
function

"not" (LEFT : UNSIGNED_BYTE) return UNSIGNED BYTE;
"and" (LEFT, RIGHT : UNSIGNED BYTE) return UNSIGNED BYTE;
"or® (LEFT, RIGHT : UNSIGNED BYTE) return UNSIGNED BYTE;
"xor" (LEFT, RIGHT : UNSIGNED BYTE) return UNSIGNMED BYTE;

TO_UNSIGNED BYTE (X : BIT_ARRAY 8) return UNSIGNED BYTE;
TO_BIT_ARRAY 8 (X : UNSIGNED_BYTE) return BIT ARRAY B;

type UNSIGNED BYTE ARRAY is array (INTEGER range <>) of UNSIGNED BYTE;

type UNSIGNED _WORD is range 0 .. 65535;
for UNSIGNED WORD'SIZE use 16;

"not" (LEFT : UNSIGNED_WORD) return UNSIGNED WORD;
"and" (LEFT, RIGHT : UNSIGNED WORD) return UNSIGNED_ WORD;
"or" (LEFT, RIGHT : UNSIGNED WORD) return UNSIGNED_WORD;
“xor"™ {LEFT, RIGHT : UNSIGNED WORD) return UNSIGNED WORD;

TO_UNSIGNED_WORD (X : BIT ARRAY 16) return UNSIGNED WORD;
TO_BIT_ARRAY 16 (X : UNSIGNED WORD) return BIT ARRAY 16;

type UNSIGNED_WORD ARRAY is array (INTEGER range <>} of UNSIGNED WORD;

type UNSIGNED_LONGWORD is range -2_147_483 648 .. 2 147
for UNSIGNED LONGWORD'SIZE use 327

"not"” (LEFT : UNSIGNED LONGWORD} return
"and” (LEFT, RIGHT : UNSIGNED LONGWORD) return
"or" (LEFT, RIGHT : UNSIGNED LONGWORD) return
"xor" (LEFT, RIGHT : UNSIGNED_ LONGWORD) return

TO_UNSIGNED_LONGWORD (X : BIT_ARRAY 32} return
TO BIT . ARRAY 32 (X : UNSIGNED | LONGWORD) return

type UNSIGNED LONGWORD ARRAY is

array

F-5

(INTEGER range <>) of UNSIGNED LONGWORD;

_483 647,

UNSIGNED_LONGWORD;
UNSIGNED_LONGWORD;
UNSIGNED LONGWORD;
UNSIGNED_LONGWORD;

UNSIGNED_LONGWORD;
BIT ARRAY 32;

The Package System on OpenVMS VAX Systems F.3.1

type UNSIGNED QUADWORD is
record
Lo : UNSIGNED*LONGWORD;
Ll : UNSIGNED_LONGWORD;
end record;
for UNSIGNED QUADWORD’SIZE use 64;
for UNSIGNED QUADWORD use
record
at mod 8;
end record;

function "not" (LEFT : UNSIGNED QUADWORD) return UNSIGNED QUADWORD;
function "and" (LEFT, RIGHT : UNSIGNED QUADWORD) return UNSIGNED QUADWORD;
function "or" (LEFT, RIGHT : UNSIGNED QUADWORD) return UNSIGNED QUADWORD;
function "xor"™ (LEFT, RIGHT : UNSIGNED QUADWORD) return UNSIGNED QUADWORD;

function TO_UNSIGNED QUADWORD (X : BIT_ARRAY 64) return UNSIGNED_QUADWORD;
function TO BIT ARRAY 64 (X : UNSIGNED QUADWORD) return BIT ARRAY 64;

type UNSIGNED QUADWORD ARRAY is
array (INTEGER range <>) of UNSIGNED QUADWORD;

function TO ADDRESS (X : INTEGER) return ADDRESS;
function TC_ADDRESS (X : UNSIGNED LONGWORD) return ADDRESS;
function TO ADDRESS (X : {universal integer}) return ADDRESS;

function TO_INTEGER (X . ADDRESS) return INTEGER;
function TO UNSIGNED LONGWORD (X : ADDRESS) return UNSIGNED LONGWORD;

function TO UNSIGNED LONGWORD (X : AST_HANDLER) return UNSIGNED LONGWORD;
-~ Conventional names for static subtypes of type UNSIGNED LONGWORD

F.3.1 The Package System on OpenVMS VAX Systems F-6

subtype UNSIGNED 1 is UNSIGNED LONGWORD range 0 .. 2¥* 1-1;
subtype UNSIGNED 2 is UNSIGNED_ LONGWORD range 0 .. 2** 2-1;
subtype UNSIGNED 3 is UNSIGNED LONGWORD range 0 .. 2** 3-1;
subtype UNSIGNED 4 is UNSIGNED LONGWORD range § .. 2** 4-1;
subtype UNSIGNED 5 is UNSIGNED LONGWORD range O .. 2*%* 5-1;
subtype UNSIGNED 6 is UNSIGNED LONGWORD range 0 .. 2** 6-1;
subtype UNSIGNED 7 is UNSIGNED LONGWORD range 0 .. 2** 7-1;
subtype UNSIGNED 8 is UNSIGNED LONGWORD range 0 .. 2** B-l;
subtype UNSIGNED 9 is UNSIGNED LONGWORD range 0 .. 2** 9-1;
subtype UNSIGNED 10 is UNSIGNED_LONGWORD range 0 .. 2#*10-1,;
subtype UNSIGNED 1l is UNSIGNED LONGWORD range 0 .. 2*%*11<l;
subtype UNSIGNED 12 is UNSIGNED_ LONGWORD range 0 .. 2**12-1;
subtype UNSIGNED 13 is UNSIGNED LONGWORD range 0 .. 2**13-1;
subtype UNSIGNED 14 is UNSIGNED LONGWORD range 0 .. 2**14-1;
subtype UNSIGNED 15 is UNSIGNED LONGWORD range 0 .. 2%*15-1;
subtype UNSIGNED 16 is UNSIGNED LONGWORD range 0 .. 2**16-1;
subtype UNSIGNED 17 is UNSIGNED LONGWORD range 0 .. 2¥*17-1;
subtype UNSIGNED 18 is UNSIGNED LONGWORD range 0 .. 2**18-1;
subtype UNSIGNED 19 is UNSIGNED LONGWORD range O .. 2**19-1;
subtype UNSIGNED 20 is UNSIGNED LONGWORD range 0 .. 2**20-1,
subtype UNSIGNED 21 is UNSIGNED LONGWORD range 0 .. 2**21-1;
subtype UNSIGNED 22 is UNSIGNED LONGWORD range 0 .. 2**22-1;
subtype UNSIGNED 23 is UNSIGNED LONGWORD range 0 .. 2**23-1;
subtype UNSIGNED 24 is UNSIGNED LONGWORD range 0 .. 2x*24-1;
subtype UNSIGNED 25 is UNSIGNED LONGWORD range ¢ .. 2**25-1;
subtype UNSIGNED 26 is UNSIGNED LONGWORD range 0 .. 2**26-1;
subtype UNSIGNED 27 is UNSIGNED LONGWORD range 0 .. 2**27-1;
subtype UNSIGNED 28 is UNSIGNED LONGWORD range 0 .. 2*%*28-1;
subtype UNSIGNED 29 is UNSIGNED LONGWORD range 0 .. 2**29-1;
subtype UNSIGNED 30 is UNSIGNED LONGWORD range 0 ., 2**30-1;
subtype UNSIGNED 31 is UNSIGNED LONGWORD range 0 .. 2**31-1;

Functions for obtaining global symbol values

function IMPORT VALUE (SYMBOL : STRING) return UNSIGNED LONGWORD;
function IMPORT ADDRESS {SYMBOL : STRING) return ADDRESS;

VAX duvice and process register operations

function READ REGISTER (SQURCE : UNSIGNED BYTE) return UNSIGNED BYTE;
function READ REGISTER (SOURCE : UNSIGNED | WORD) return UNSIGNED | _WORD;
function READ REGISTER (SOURCE : UNSIGNED LONGWCRD)

return UNSIGNED_ LONGWORD;

procedure WRITE REGISTER(SOURCE : UNSIGNED BYTE;

TARGET : out UNSIGNED BYTE};
procedure WRITE REGISTER(SOURCE : UNSIGNED WCRD;

TARGET : out UNSIGNEL WORD};
procedure WRITE REGISTER(SOURCE : UNSIGNED LONGWORD;

TARGET : out UNSIGNED LONGWORD);

function MFPR (REG NUMBER : INTEGER) return UNSIGNED LONGWORD;
procedure MIPR (REG NUMBER : INTEGER;
SOURCE ! UNSIGNED LONGWORD);

The Package System on OpenVMS VAX Systems §.3.1

~- VAX interlocked-instruction procedures

procedure CLEAR INTERLOCKED (BIT : in out BOOLEAN;
OLD_VALUE : out BOCLEAN);
procedure SET INTERLOCKED (BIT : in out BOOLEAN;

OLD_VALUE : out BOOLEAN);

type ALIGNED WORD is
record
VALUE : SHORT INTEGER;
end record;
for ALIGNED WORD use
record
at mod 2;
end record;

procedure ADD INTERLOCKED (ADDEND : in SHORT INTEGER;
AUGEND : in out ALIGNED WORD;
SIGN > out INTEGER) ;

type INSQ STATUS is (OK_NOT FIRST, FAIL NO LOCK, OK FIRST);
for INSQ STATUS use (0, 1, 2);

type REMQ STATUS is (OK NOT EMPTY, FAIL NO_LOCK,
OK_EMPTY, FAIL WAS_EMPTY);
for REMQ STATUS use (0, 1, 2, 3);

procedure INSQHI (ITEM : in ADDRESS;
HEADER :; in ADDRESS;
STATUS : out INSQ STATUS),

procedure REMQHI (HEADER : in ADDRESS;
ITEM : out ADDRESS;
STATUS : out REMQ STATUS);

procedure INSQTI (ITEM : in RADDRESS;
HEADER : in ADDRESS,
STATUS : out INSQ STATUS);

procedure REMQTI (HEADER : in ADDRESS;
ITEM : out ADDRESS;
STATUS : out REMQ STATUS);

private
-~ Not showr

end SYSTEM,

F.3.2 The Package System on OpenVMS AXP Systems

F.3.2 The Package System on OpenVMS AXP Systems
package SYSTEM is

F-9

type NAME is

-= DEC Ada implementations

{(VAX_VMS, VAXELN, OpenVMS AXP, RISC_ULTRIX,

-- XD Ada implementations

MIL STD_1750A, MC68000, MC68020, MC68040, CPU32);
for NAME use (1, 2, 7, 8, 101, 102, 103, 104, 1095);

SYSTEM_NAME : constant NAME := OpenVMS~AXP;
STORAGE UNIT : constant := §;
2**31-1;

MEMORY_SIZE : constant :=

MAX INT : constant := 2**31-1;
MIN INT : constant := -(2**31);
MAX DIGITS : constant := 15;

MAX MANTISSA : constant := 31;
FINE_DELTA : constant := 2.0**(-31};
TICK . constant := 10.0%*(-3);

subtype PRIORITY is INTEGER range O .. 15;
type INTEGER 8 is range -128 .. 127;

for INTEGER B'SIZE use 8;

type INTEGER 16 is range -32 768 .. 32_767;
for INTEGER 16’SIZE use 16;

type INTEGER_32 is range -2_147_483_648 .. 2_147 483_647;
for INTEGER 32'SIZE use 32;

type LARGEST INTEGER is range MIN_INT .. MAX INT;
Address type

type ADDRESS is private;

ADDRESS_ZERO : constant ADDRESS;
NO_ADDR : constant ADDRESS;
NULL_ADDRESS : constant ADDRESS;

Note that because ADDRESS i3 a private type
the functions "=" and "/=" are already available and
do not have to be explicitly defined

function "=" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function "/=" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function "<" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function "<=" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function ">" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function ">=" (LEFT, RIGHT : ADDRESS) return BCQOLEAN;

generic
type TARGET is private;
function FETCH_FROM_ADDRESS (A : ADDRESS) return TARGET;

The Package System on OpenVMS AXP Systems

F3.2

generic
type TARGET is private;
procedure ASSIGN TO ADDRESS (A : ADDRESS; T : TARGET);

DEC Ada floating point type declarations for the VAX
floating point data types

type F_FLOAT is {digits 6};
type D FLOAT is {digits 9);
type G_FLOAT is {digits 15);

DEC Ada floating point type declarations for the IEEE
floating point data types

type IEEE SINGLE FLOAT is {digits 6};
type IEEE | _ DOUBLE FLOAT is (digits 15};

type TYPE CLASS is (TYPE_CLASS_ENUMERATION,
TYPE_CLASS_INTEGER,
TYPE_CLASS FIXED POINT,
TYPE_CLASS_FLOATING_POINT,
TYPE_CLASS ARRAY,
TYPE_CLASS_ RECORD,
TYPE_CLASS_ACCESS,
TYPE_CLASS_TASK,
TYPE_CLASS_ADDRESS) ;

AST handler type

type AST HANDLER is limited private;
NO_AST BANDLER : constant AST HANDLER;
Non-Ada exception

NON_ADA ERRCR : exception;
Hardware-oriented types and functions

type BIT ARRAY is array (INTEGER range <>) of BOOLEAN;
pragma PACK(BIT ARRAY);

subtype BIT ARRAY 8 is BIT ARRAY (0 .. 7);
subtype BIT ARRAY 16 is BIT ARRAY (0 .. 15);
subtype BIT ARRAY 32 is BIT ARRAY (0 .. 31);
subtype BIT ARRAY _64 is BIT ARRAY (0 .. 63);

type UNSIGNED BYTE is range 0 .. 255;
for UNSIGNED BYTE'SIZE use 8;

function "not" (LEFT : UNSIGNED BYTE) return UNSIGNED BYTE;
function "and" (LEFT, RIGHT : UNSIGNED BYTE) return UNSIGNED BYTE;

function "or" (LEFT, RIGHT : UNSIGNED BYTE) return UNSIGNED BYTE;

function "xor" (LEFT, RIGHT : UNSIGNED‘BYTE) return UNSIGNED-BYTE;

function TO_UNSIGNED BYTE (X : BIT ARRAY 8} return UNSIGNED BYTE;
function TO_BIT ARRAY 8 (X : UNSIGNED BYTE) return BIT ARRAY 8,

F.3.2 The Package System on OpanVMS AXP Systems

F-11

type UNSIGNED BYTE ARRAY is array (INTEGER range <>) of UNSIGNED BYTE;

type UNSIGNED WORD is range 0 .. 65535;
for UNSIGNED]) WORD' SIZE use 16;

function
function
function
function

function
function

"not™ (LEFT

: UNSIGNED WORD) return UNSIGNED WORD;

7and” (LEFT, RIGHT : UNSIGNED_WORD) return UNSIGNED WORD;
"or" (LEFT, RIGHT : UNSIGNED WORD) return UNSIGNED_WORD;
"xor" (LEFT, RIGHT : UNSIGNED WCRD) return UNSIGNED_WORD;

TO UNSIGNED WORD (X : BIT ARRAY 16) return UNSIGNED WORD;

10] BIT ARRAY 16

(X : UNSIGNED WORD) return BIT ARRAY 16,

type UNSIGNED WORD_ARRAY is array (INTEGER range <>) of UNSIGNED WORD;

type UNSIGNED_LONGWORD is range -2_147 483 648 .. 2 147 483 647;
for UNSIGNED_ _LONGWORD' SIZE use 32;

function
function
function
function

function
function

type UNSIGNED QUADWORD is

"not" (LEFT

1 UNSIGNED LONGWORD) return UNSIGNED LONGWORD;

"and" (LEFT, RIGHT : UNSIGNEﬁ:LONGWORD) return UNSIGNED—LONGWORD,
"or" {LEFT, RIGHT : UNSIGNED_ LONGWORD} return UNSIGNED | __LONGWORD;
"zor” (LEFT, RIGHT : UNSIGNED_LONGWORD) return UNSIGNED_LONGNORD,

TO_UNSIGNED LONGWORD (X : BIT_ARRAY 32) xeturn UNSIGNED LONGWORD;
TO_ BIT ARRAY 32 (X : UNSIGNED LONGWORD) return BIT ARRAY 32;

type UNSIGNED LONGWORD ARRAY is
array (INTEGER range <>) of UNSIGNED_LONGWORD;

record

L0 ¢
Ll

end record;
for UNSIGNED QUADWORD'SIZE use 64;

for UNSIGNED QUADWORD use

UNSIGNED_ LONGWORD;
UNSIGNED LONGWCRD;

record
at mod 8;

end record;
function "not" (LEFT : UNSIGNED QUADWORD) return UNSIGNED_ QUADWORD;
function "and" (LEFT, RIGHT : UNSIGNED QUADWORD) return UNSIGNED QUADWORD;
function "or" (LEFT, RIGHT : UNSIGNED QUADWORD} return UNSIGNED QUADWORD;
function "xor" (LEFT, RIGHT : UNSIGNED QUADWCRD) return UNSIGNED QUADWORD;
function T0 | UNSIGNED QUADWORD (X : BIT . ARRAY 64) return UNSIGNED_QUADWORD;
function T0) BIT ARRAY 64 (X : UNSIGNED QUADWORD) return BIT_ARRAY”64;
type UNSIGNED QUADWORD ARRAY is

array (INTEGER range <>} of UNSIGNED QUADWORD
function TO ADDRESS (X : INTEGER) return ADDRESS;
function TopADDRESS (X : UNSIGNED~LONGWORD) return ADDRESS;
function TO ADDRESS (X : {universal integer}} return ADDRESS;
function TO_INTEGER {X : ADDRESS) return INTEGER;
function TOWUNSIGNED_LONGWORD {X : ADDRESS) return UNSIGNED LONGWORD;

The Package System on OpenVMS AXP Systems F.3.2

function TO UNSIGNED LONGWORD (X : AST HANDLER) return UNSIGNED LONGWORD;

-- Conventional names for static subtypes of type

subtype UNSIGNED 1 is UNSIGNED_LONGWORD
subtype UNSIGNED 2 is UNSIGNED LONGWORD
subtype UNSIGNED 3 is UNSIGNED LONGWORD
subtype UNSIGNED 4 is UNSIGNED LONGWORD
subtype UNSIGNED 5 is UNSIGNED_LONGWORD
subtype UNSIGNED 6 is UNSIGNED_LONGWORD
subtype UNSIGNED 7 is UNSIGNED LONGWORD
subtype UNSIGNED 8 is UNSIGNED LONGWORD
subtype UNSIGNED 9 is UNSIGNED LONGWORD
subtype UNSIGNED 10 is UNSIGNED LONGWORD
subtype UNSIGNED 11 is UNSIGNED LONGWORD
subtype UNSIGNED 12 is UNSIGNED_LONGWORD
subtype UNSIGNED 13 is UNSIGNED_ LONGWORD
subtype UNSIGNED 14 is UNSIGNED_LONGWORD
subtype UNSIGNED 15 is UNSIGNED_LONGWORD
subtype UNSIGNED 16 is UNSIGNED LONGWORD
subtype UNSIGNED 17 is UNSIGNED_ LONGWORD
subtype UNSIGNED 18 is UNSIGNED_LONGWORD
subtype UNSIGNED 19 is UNSIGNED LONGWORD
subtype UNSIGNED 20 is UNSIGNED LONGWORD
subtype UNSIGNED 21 is UNSIGNED LONGWORD
subtype UNSIGNED 22 is UNSIGNED LONGWORD
subtype UNSIGNED 23 is UNSIGNED LONGWORD
subtype UNSIGNED 24 is UNSIGNED_LONGWORD
subtype UNSIGNED 25 is UNSIGNED LONGWORD
subtype UNSIGNED 26 is UNSIGNED LONGWORD
subtype UNSIGNED 27 is UNSIGNED LONGWORD
subtype UNSIGNED 28 is UNSIGNED LONGWORD
subtype UNSIGNED 29 is UNSIGNED_LONGWORD
subtype UNSIGNED 30 is UNSIGNED_LONGWORD
subtype UNSIGNED 31 is UNSIGNED LONGWORD

range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range

-- Function for obtaining global symbol values
function IMPORT VALUE (SYMBOL : STRING) return

private
-- Not shown
end SYSTEM;

F.3.3 The Package System on ULTRIX Systems

UNSIGNED_LONGWORD
L. 2%%

1

. 2%% 2

L. 2%% 3

..2*% 4
. 2%% G-

6

1

8

9

(%

AL
L 2%

AL

: 2**20-1;

L 2%x20-1

COoCOCOOOODDOQOOODODOOODCOLCOODOOOOCoCOOOoO
0
*
*
[
[~
1
Py

UNSIGNED_LONGWORD;

F.3.3 The Package System on ULTRIX Systems
package SYSTEM is

type NAME is (RISC_ULTRIX);
for NAME use (RISC_ULTRIX => 6);

SYSTEM NAME : constant N := RISC_ULTRIX;
STORAGE UNIT : constant := 8;

MEMORY SIZE : constant := 2*%*31-1;

MAX INT : constant := 2*%*31-1;

MIN_INT 1 constant := =(2**31},

MAX DIGITS : constant := 15;

MAX MANTISSA : constant := 31;

FINE_DELTA : constant := 2.07*(-31);

TICK : constant := 3.906 * 10.0**(~3);

subtype PRICRITY is INTEGER range 0 .. 15;
-~ Address type

type ADDRESS is private;
ADDRESS ZERO : constant ADDRESS;

function "+" (LEFT : ADDRESS; RIGHT : INTEGER) return ADDRESS;
function "+" {(LEFT : INTEGER; RIGHT : ADDRESS) return ADDRESS;
function "-" {LEFT : ADDRESS; RIGHT : ADDRESS) return INTEGER;
function "-" (LEFT : ADDRESS; RIGHT : INTEGER) return ADDRESS;

-- function "=" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function "<" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function "<=" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function ">" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function ">=" (LEFT, RIGHT : ADDRESS) return BOOLEAN;

-~ Note that because ADDRESS is a private type
-- the functions "=" and "/=" are already available and
-~ do not have to be explicitly defined

generic
type TARGET is private;
function FETCH_FROM ADDRESS (A : ADDRESS) return TARGET;

generic
type TARGET is private;
procedure ASSIGN TO ADDRESS (A : ADDRESS; T : TARGET),

-~ DEC Ada floating point type declarations for the IEEE
-- floating point data types

type IEEE SINGLE FLOAT is (digits 6};
type IEEE DOUBLE FLOAT is {digits 15);

F-13 The Package System on ULTRIX Systems

F33

type TYPE CLASS is (TYPE_CLASS_ ENUMERATION,
TYPE_CLASS_INTEGER,
TYPE CLASS_FIXED POINT,
TYPE_CLASS_FLOATING_POINT,
TYPE_CLASS_ARRAY,
TYPE_CLASS_RECORD,
TYPE_CLASS_ACCESS,
TYPE_CLASS_TASK,
TYPE_CLASS_ADDRESS) ;

Non-Ada

type

cxception
NON ADA ERROR :

exception;

pragma PACK(BIT ARRAY);

subtype BIT ARRAY 8
subtype BIT ARRAY 16
subtype BIT ARRAY 32
subtype BIT ARRAY 64

type UNSIGNED BYTE
for UNSIGNED BYTE’SIZE

function
function
function

function "xor

function
function

type UNSIGNED WORD

use
"not" (LEFT
"and" (LEFT, RIGHT :
"or" (LEFT, RIGHT :

" (LEFT, RIGHT :
TC UNGIGNED BYTE (X

TO_BIT ARRAY 8 (X :

is range 0 ..

Hardware-oriented types and functions

is BIT ARRAY (0 .. 7);
is BIT ARRAY (0 .. 15);
is BIT ARRAY (0 .. 31);
is BIT ARRAY (0 .. 63);
is range 0 .. 255;

8;

: UNSIGNED BYTE)

UNSIGNED BYTE)
UNSIGNED_BYTE)
UNSIGNED BYTE)

BIT ARRAY is array (INTEGER range <>} of BOOLEAN;

return UNSIGNED BYTE;
return UNSIGNED BYTE;
return UNSIGNED BYTE;
return UNSIGNED_BYTE;

BIT_ARRAY 8) return UNSIGNED BYTE;

UNSIGNED BYTE) return BIT ARRAY 8;
type UNSIGNED BYTE ARRAY is array (INTEGER range <>) of UNSIGNED BYTE;

65535;

for UNSIGNED WORD’' SIZE use 16;
"not™ (LEFT

function
function
function
function

function
function

norn
"XOr

: UNSIGNED WORD)
"and" (LEFT, RIGHT :

(LEFT, RIGHT :
" (LEFT, RIGHT :

TO_UNSIGNED_WORD (X :
TO_BIT ARRAY 16 (X :

UNSIGNED WORD)
UNSIGNED_WORD)
UNSIGNED_WORD)

BIT ARRAY 16}
UNSIGNED WORD)

return UNSIGNED_ WORD;
return UNSIGNED WORD;
return UNSIGNED WORD;
return UNSIGNED WORD;

return UNSIGNED WORD;
return BIT ARRAY 16;

type UNSIGNED WORD_ARRAY is array (INTEGER range <>) of UNSIGNED_WORD;

type UNSIGNED LONGWORD is range MIN INT ..

for UNSIGNED LONGWORD' SIZE use 32;
"not"™ (LEFT

function
function
function
function

"and” (LEFT, RIGHET :
(LEFT, RIGHT :
(LEFT, RIGHT :

ﬂorl!
"xor"

: UNSIGNED_LONGWORD)
UNSIGNED LONGWORD)
UNSIGNED LONGWORD)
UNSIGNED LONGWORD)

F.3.3 The Package System on ULTRIX Systems

MAX INT;

return UNSIGNED LONGWORD;

return UNSIGNED LONGWORD;
return UNSIGNED LONGWORD;
return UNSIGNED_ LONGWORD;

F-14

function TO_UNSIGNED LONGWORD (X : BIT ARRAY 32)
return UNSIGNED LONGWORD;
function TO BIT ARRAY 32 (X : UNSIGNED_LONGWORD) return BIT ARRAY 32;

type UNSIGNED LONGWORD ARRAY is
array {INTEGER range <>) of UNSIGNED LONGWORD;

type UNSIGNED QUADWORD is record
LO : UNSIGNED LONGWORD,
Ll : UNSIGNED_LONGWORD,
end record;

for UNSIGNED QUADWORD'SIZE use 64;

function "not"” (LEFT : UNSIGNED_QUADWORD) return UNSIGNED QUADWORD,
function "and" (LEFT, RIGAT : UNSIGNED QUADWORD) return UNSIGNED QUADWORD;
function "or" (LEFT, RIGHT : UNSIGNED QUADWORD) return UNSIGNED_ QUADWCRD;
function "xor"™ (LEFT, RIGHT : UNSIGNED QUADWORD) return UNSIGNED QUADWORD;

function TO UNSIGNED QUADWORD (X : BIT_ARRAY 64)
return UNSIGNED QUADWORD;
function TO BIT ARRAY 64 (X : UNSIGNED QUADWORD) return BIT ARRAY 64;

type UNSIGNED QUADWORD ARRAY is
array (INTEGER range <>) of UNSIGNED QUADWORD;

function TO ADDRESS (X : INTEGER) return ADDRESS;
function TO ADDRESS (X : UNSIGNED LONGWORD) return ADDRESS;
function TO_ADDRESS (X : (universal integer}) return ADDRESS;

function TO_INTEGER {X : ADDRESS) return INTEGER;
function TO_UNSIGNED LONGWORD (X : ADDRESS) return UNSIGNED LONGWORD;

-- Conventional names for static subtypes of type UNSIGNED LONGWORD

subtype UNSIGNED 1 is UNSIGNED LONGWORD range § .. 2** 1-1;
subtype UNSIGNED 2 1is UNSIGNED LONGWORD range 0 .. 2** 2-1;
subtype UNSIGNED 3 is UNSIGNED LONGWORD range 0 .. 2** 3-1;
subtype UNSIGNED 4 is UNSIGNED LONGWORD range 0 .. 2** 4-1;
subtype UNSIGNED 5 is UNSIGNED LONGWORD range 0 .. 2** 5-1;
subtype UNSIGNED 6 is UNSIGNED LONGWORD range 0 .. 2** 6-1;
subtype UNSIGNED 7 is UNSIGNED LONGWORD range O .. 2** 7-1;
subtype UNSIGNED 8 is UNSIGNED_ LONGWORD range 0 .. 2** 8-1;
subtype UNSIGNED 9 is UNSIGNED LONGWORD range 0 .. 2%* 9-1;
subtype UNSIGNED 10 is UNSIGNED LONGWORD range 0 .. 2**10-1;
subtype UNSIGNED 11 is UNSIGNED LONGWORD range ¢ .. 2**11-1;
subtype UNSIGNED 12 is UNSIGNED LONGWORD range 0 .. 2**12-1;
subtype UNSIGNED 13 is UNSIGNED LONGWORD range 0 .. 2**13-1;
subtype UNSIGNED 14 is UNSIGNED LONGWORD range 0 .. 2%*14-1;
subtype UNSIGNED 15 is UNSIGNED_LONGWORD range 0 .. 2**15-1;
subtype UNSIGNED 16 is UNSIGNED LONGWORD range 0 .. 2**16-1;
subtype UNSIGNED 17 is UNSIGNED LONGWORD range 0 .. 2**17-1;
subtype UNSIGNED 18 is UNSIGNED LONGWORD range 0 .. 2%*18-1;
subtype UNSIGNED 19 is UNSIGNED LONGWORD range 0 .. 2**19-1;
subtype UNSIGNED 20 is UNSIGNED LONGWORD range 0 .. 2**20-1;

F-15 The Package System on ULTRIX Systems F.3.3

subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype

private

UNSIGNED 21
UNSIGNED 22
UNSIGNED 23
UNSIGNED 24
UNSIGNED_25
UNSIGNED_ 26
UNSIGNED 27
UNSIGNED 28
UNSIGNED_29
UNSIGNED_30
UNSIGNED_31

-- Not shown

end SYSTEM;

is
is
is
is
is
is
is
is
is
is
is

UNSIGNED LONGWORD
UNSIGNED LONGWORD
UNSIGNED_LONGWORD
UNSIGNED LONGWORD
UNSIGNED LONGWORD
UNSIGNED LONGWOKW
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD
UNSIGNED_LONGWORD

range
range
range
range
range
range
range
range
range
range
range

Function for obtaining global symbol values

function IMPORT VALUE (SYMBOL : STRING) return

OO OO

.. 2%*21-1;
L. 2%x22-1;
L. 2%%x23-1;

. 2%%24-1;
.. 2%x*25<1;
L. 2**26-1;

. 2%%27-1;
.. 2%%28-1;
L. 2%%29-1;
.. 2%%30-1;

. 2xx31-1;

UNSIGNED LONGWORD;

F.4 Restrictions on Representation Clauses

The representation clauses allowed in DEC Ada are length, enumeration,

record representation, and address clauses.

In DEC Ada, a representation clause for a generic formal type or a type that
depends on a generic formal type is not allowed. In addition, a representation
clause for a composite type that has a component or subcomponent of a generic
formal type or a type derived from a generic formal type is not allowed.

F.5 Restrictions on Unchecked Type Conversions

DEC Ada supports the generic function UNCHECKED_CONVERSION with
the following restrictions on the class of types involved:

The actual subtype corresponding to the formal type TARGET must not be
an unconstrained array type.

The actual subtype correspending to the formal type TARGET must not be

an unconstrained type with discriminants.

Further, when the target type is a type with discriminants, the value resulting
from a call of the conversion function resulting from an instantiation of '
UNCHECKED_CONVERSION is checked to ensure that the discriminants

satisfy the constraints of the actual subtype.

F.5 Restrictions on Unchecked Type Conversions

If the size of the source value is greater than the size of the target subtype,
then the high order bits of the value are ignored (truncated); if the size of
the source value is less than the size of the target subtype, then the value is
extended with zero bits to form the result value.

F.6 Conventions for Implementation-Generated Names
Denoting Implementation-Dependent Components in
Record Representation Clauses '

DEC Ada does not allocate implementation-dependent components in records.

F.7 Interpretation of Expressions Appearing in Address
Clauses
Expressions appearing in address clauses must be of the type ADDRESS
defined in the package SYSTEM (see 13.7a.1 and F.3). In DEC Ada, values of

type SYSTEM.ADDRESS are interpreted as virtual addresses in the machine’s
address space.

DEC Ada allows address clauses for objects and imported subprograms (see
13.5).

DEC Ada does not support interrupts as defined in section 13.5.1.

On OpenVMS systems, DEC Ada provides the pragma AST_ENTRY and the
AST_ENTRY attribute as alternative mechanisms for handling asynchronous
interrupts from the OpenVMS operating system (see 9.12a).

For information on handling ULTRIX signals, see the DEC Ada Run-Time
Reference Manual for ULTRIX Systems.

F.8 Implementation-Dependent Characteristics of
Input-Output Packages

In addition to the standard predefined input-output packages
(SEQUENTIAL_IO, DIRECT_IO, TEXT_10, and JO_EXCEPTIONS), DEC Ada
provides packages for handling sequential and direct files with mixed-type
elements:

¢ SEQUENTIAL_MIXED_IO (see 14.2b.4).
e DIRECT_MIXED_IO (see 14.2b.6).

DEC Ada does not provide the low level input-output package described in this
section,

F-17 Implementation-Dependent Characteristics of Input-Output Packages F.8

As specified in section 14.4, DEC Ada raises the following language-defined
exceptions for error conditions that occur during input-output operations:
STATUS_ERROR, MODE_ERROR, NAME_ERROR, USE_ERROR, END_
ERROR, DATA_ERROR, and LAYOUT_ERROR. DEC Ada does not raise the
language-defined exception DEVICE_ERROR,; device-related errors cause the
exception USE_ERROR to be raised.

The exception USE_ERROR is raised under the following conditions:
¢ If the capacity of the external file has been exceeded.
¢ In all CREATE operations if the mode specified is IN_FILE.

e In all CREATE operations if the file attributes specified by the FORM
parameter are not supported by the package.

¢ In all CREATE, OPEN, DELETE, and RESET operations if, for the
specified mode, the environment does not support the operation for an
external file.

¢ In all NAME operations if the file has no name.

¢ In the SET_LINE_LENGTH and SET_PAGE_LENGTH operations on text
files if the lengths specified are inappropriate for the external file.

* In text files if an operation is attempted that is not possible for reasons
that depend on characteristics of the external file.

DEC Ada provides other input-output packages that are available on specific
systems. The following sections outline those packages. The following sections
also give system-specific information about the overall set of DEC Ada
input-output packages and input-output exceptions,

F.8.1 DEC Ada Input-Output Packages on OpenVMS Systems

On OpenVMS systems, the DEC Ada predefined packages and their operations
are implemented using OpenVMS Record Management Services (RMS)

file organizations and facilities. To give users the maximum benefit of the
underlying RMS input-output facilities, DEC Ada provides the following
OpenVMS-specific packages:

e RELATIVE_IO (see 14.2a.3).

» INDEXED_IO (see 14.2a.5).

¢ REIATIVE_MIXED_IO (see 14.2b.8).
+ INDEXED_MIXED_IO (see 14.2b.10).
* AUX_IO_EXCEPTIONS (see 14.5a).

F.8.1 DEC Ada Input-Output Packages on OpenVMS Systems F-18

The following sections summarize the implementation-dependent characteris-
tics of the DEC Ada input-output packages. The DEC Ada Run-Time Reference
Manual for OpenVMS Systems discusses these characteristics in more detail.

F.8.1.1 Interpretation of the FORM Parameter on OpenVMS Systems

F-19

On OpenVMS systems, the value of the FORM parameter may be a string

of statements of the OpenVMS Record Management Services (RMS) File
Definition Language (FDL), or it may be a string referring to a text file of FDL
statements (called an FDL file).

FDL is a special-purpese OpenVMS language for writing file specifications.
These specifications are then used by DEC Ada run-time routines to create
or open files. See the DEC Ada Run-Time Reference Manual for OpenVMS
Systems for the rules governing the FORM parameter and for a general
description of FDL. See the Guide to OpenVMS File Applications and the
OpenVMS Record Management Utilities Reference Manual for complete
information on FDL.

On OpenVMS systems, each input-output package has a default string of FDL
statements that is used to open or create a file. Thus, in general, specification
of a FORM parameter is not necessary: it is never necessary in an QPEN
procedure; it may be necessary in a CREATE procedure. The packages for
which a value for the FORM parameter must be specified in a CREATE
procedure are as follows:

* The packages DIRECT_IO and RELATIVE_IO require that a maximum
element (record) size be specified in the FORM parameter if the item with
which the package is instantiated is unconstrained.

* The packages DIRECT_MIXED_IO and RELATIVE_MIXED_IO require
that a maximnm element (record) size be specified in the FORM parameter.

¢ The packages INDEXED_IO and INDEXED_MIXED_IQ require that
information about keys be specified in the FORM parameter.

Any explicit FORM specification supersedes the default attributes of the
governing input-output package. The DEC Ada Run-Time Reference Manual
for OpenVMS Systems describes the default external file attributes of each
input-output package.

The use of the FORM parameter is described for each input-output package -
in chapter 14. For information on the default FORM parameters for each
DEC Ada input-cutput package and for information en using the FORM
parameter to specify external file attributes, see the DEC Ada Run-Time
Reference Manual for OpenVMS Systems. For information on FDL, see the
Guide to OpenVMS File Applications and the OpenVMS Record Management
Utilities Reference Manual.

imerpretation of the FORM Parameter on OpenVMS Systems F.8.1.1

F.8.1.2 Input-Output Exceptions on OpenVMS Systems

In addition to the DEC Ada exceptions that apply on all systems, the following
also apply on OpenVMS systems:

¢ The DEC Ada exceptions LOCK_ERROR, EXISTENCE_ERROR, and KEY _
ERROR are raised for relative and indexed input-cutput operations.

* The exception USE_ERROR is raised as follows in relative and indexed
files:

— In the WRITE operations on relative or indexed files ilf the element in
the position indicated has already been written.

— In the DELETE_ELEMENT operations on relative and indexed files if
the current element is undefined at the start of the operation.

— In the UPDATE operations on indexed files if the current element is
undefined or if the specified key violates the external file attributes.

* The exception NAME_ERROR is raised as specified in section 14.4:
by a call of a CREATE or OPEN procedure if the string given for the
NAME parameter does not allow the identification of an external file. On
OpenVMS systems, the value of a NAME parameter can be a string that
denotes a OpenVMS file specification or a OpenVMS logical name (in either
case, the string names an external file). For a CREATE procedure, the
value of a NAME parameter can also be a null string, in which case it
names a temporary external file that is deleted when the main program
exits. The DEC Ada Run-Time Reference Manual for OpenVMS Systems
explains the naming of external files in more detail.

¢ The exception LAYOUT_ERROR is raised as specified in section 14.4: in
text input-output by COL, LINE, or PAGE if the value reiurned exceeds
COUNT' LAST. The exception LAYOUT_ERROR is also raised on output by
an attempt to set column or line numbers in excess of specified maximum
line or page lengths, and by attempts to PUT too many characters to
a string. In the DEC Ada mixed input-output packages, the exception
LAYOUT_ERROR is raised by GET_ITEM if no more items can be read
from the file buffer; it is raised by PUT_ITEM if the current position
exceeds the file buffer size.

F.8.1.2 Input-Output Exceptions on OpenVMS Systems F-20

F.8.2 Input-Output Packages on ULTRIX Systems

On ULTRIX systems, the DEC Ada predefined packages and their operations
are implemented using ULTRIX file facilities. DEC Ada provides no additional
input-output packages specifically related to ULTRIX systems.

The following sections summarize the ULTRIX-specific characteristics of the
DEC Ada input-output packages. The DEC Ada Run-Time Reference Manual
for ULTRIX Systems discusses these characteristics in more detail.

F.B.2.1 Iinterpretation of the FORM Parameter on ULTRIX Systems

F-21

On ULTRIX systems, the value of the FORM parameter must be a character
string, defined as follows:

string ri== "[field {, field}}"

field 1:== field id => field value

field id ::== BUFFER_SIZE { ELEMENT SIZE | FILE DESCRIPTIR
field value ::== digit {digit}

Depending o the fields specified, the value of the FORM parameter may
represent one or more of the following:

* The size of the buffer used during file operations. The field value specifies
the number of bytes in the buffer.

* The maximum element size for a direct file. The field value specifies the
maximum nu:uber of bytes in the element.

* An ULTRIX file descriptor for the Ada file being opened. The ULTRIX file
deseriptor must be open.

If the file descriptor is not open, or if it refers to an Ada file that is
already open, then the exception USE_ERROR is raised. Note that the
file descriptor option can be used only in the FORM parameter of an OPEN
procedure.

Each input-output package has an implementation-defined value form string
that is used to open or create a file. Thus, in general, specification of a FORM
parameter is not necessary. The packages for which a value for the FORM
parameter must be specified in a CREATE procedure are as follows:

* The package DIRECT_IO requires that a maximum element size be
specified in the FORM parameter if the item with which the package 1s
instantiated is unconstrained.

* The package DIRECT_MIXED_10 requires that a maximum element size
be specified in the FORM parameter.

interpretation of the FORM Parameter on ULTRIX Systems £.8.2.1

The use of the FORM parameter is described for each input-output package in
chapter 14. For information on using the FORM parameter to specify external
file attributes, see the DEC Ada Run-Time Reference Manual for ULTRIX
Systems.

F.8.2.2 Input-Output Exceptions on ULTRIX Systems

In addition to the DEC Ada exceptions that apply on all systems, the following
also apply on ULTRIX systems:

¢ The exception NAME_ERROR is raised as specified in section 14.4: by a
call of a CREATE or OPEN procedure if the string given for the NAME
parameter does not allow the identification of an external file. On ULTRIX
systems, the value of a NAME parameter can be a string that denotes an
ULTRIX file specification. For a CREATE procedure, the value of a NAME
parameter can also be a null string, in which case it names a temporary
external file that is deleted when the main program exits. The DEC Ada
Run-Time Reference Manual for ULTRIX Systems explains the naming of
external files in more detail.

¢ The exception LAYOUT_ERROR is raised as specified in section 14.4: in
text input-output by COL, LINE, or PAGE if the value returned exceeds
COUNT- LAST. The exception LAYOUT_ERROR is also raised on output by
an attempt to set column or line numbers in excess of specified maximum
line or page lengths, and by attempts to PUT too many characters to
a string. In the DEC Ada mixed input-output packages, the exception
LAYOUT_ERROR is raised by GET_ITEM if no more items can be read
from the file buffer; it is raised by PUT_ITEM if the current position
exceeds the file buffer size.

F.9 Other Implementation Characteristics

Implementation characteristics relating to the definition of a main program,
various numeric ranges, and implementation limits are summarized in the
following sections.

F.9.1 Definition of a Main Program

DEC Ada permits a library unit to be used as a main program under the
following conditions:

s Ifitis a procedure with no formal parameters.

On OpenVMS systems, the status returned to the OpenVMS environment
upon normal completion of the procedure is the value 1.

On ULTRIX systems, the status returned to the ULTRIX environment
upon normal completion of the procedure is the value 0.

F.9.1 Definition of a Main Program F-22

s Ifit is a function with no formal parameters whose returned value is of
a discrete type. In this case, the status returned to the operating-system
environment upon normal completion of the function is the function value.

¢ Ifit is a procedure declared with the pragma EXPORT _VALUED_
PROCEDURE, and it has one formal out parameter that is of a discrete
type. In this case, the status returned to the operating-system environment
upon normal completion of the procedure is the value of the first (and only)
parameter.

Note that when a main function or a main procedure declared with the pragma
EXPORT_VALUED_PROCEDURE returns a discrete value whose size is less
than 32 bits, the value is zero- or sign-extended as appropriate.

F.9.2 Values of Integer Attributes
The ranges of values for integer types declared in the package STANDARD are

as follows:

Systems on which it
integer type Range applies
SHORT_SHORT_INTEGER -128 .. 127 Al
SHORT_INTEGER -32768 .. 32767 All
INTEGER -214T7483648 .. 2147483647 All
LONG_INTEGER -2147483648 .. 2147483647 OpenVMS

F-23 Values of Integer Attributes F.9.2

P

For the applicable input-output packages, the ranges of values for the types
COUNT and POSITIVE_COUNT are as follows:

COUNT 0 .. INTEGER'LAST
POSITIVE_COUNT 1 .. INTEGER’ LAST

For the package TEXT_l10O, the range of values for the type FIELD is as follows:
FIELD 0 .. INTEGER' LAST

F.9.3 Values of Floating Point Attributes
DEC Ada provides a number of predefined floating point types, as shown in the

following table:
Systems on which T
Type Representation it applies Section
FLOAT F_floating All OpenVMS! 3.5.7
IEEE single float ULTRIX,]
OpenVMS AXP?
LONG_FLOAT D_floating or G_floating All OpenVMS' 3.5.7
IEEE double float ULTRIX,
OpenVMS AXP?
LONG_LONG_FLOAT H_floating OpenVMS VAX 3.5.7
F_FLOAT F_floating All OpenVMS 3.5.7
D_FLOAT D_floating All OpenVMS 3.5.7
G_FLOAT G_floating All OpenVMS 357
H_FLOAT H_floating OpenVMS VAX 3.5.7
JEEE_SINGLE_FLOAT IEEE single float ULTRIX, 3.5.7
OpenVMS AXP?
iEEE_DOUBLE_FLOAT 1EEE double float ULTRIX, 3517
OpenVMS AXP?

1When the value of the pragma FLOAT_REPRESENTATION is VAX_FLOAT.
2When the value of the pragma FLOAT_REPRESENTATION is IEEE_FLOAT.

The values of the floating point attributes for the different floating point
representations appear in the following tables.

F.9.3 Values of Fioating Point Attributes F-24

F.9.3.1 F_fioating Characteristics

F_floating value and approximate decimal equivalent

Attribute (where applicable)

DIGITS 6

MANTISSA 21

EMAX 84

EPSILON 16#0.1000_000#e—4
approximately 9.53674E-07

SMALL 16#0.8000_000+#e-21
approximately 2.58494E-26

LARGE 16#0.FFFF_F80#e+21
approximately 1.93428E+25

SAFE_EMAX 127

SAFE_SMALL 16#0.1000_000#e-31
approximately 2.93874E-39

SAFE_LARGE 16#0.7FFF_FC0#e+32
approximately 1.70141E+38

FIRST -16#0.7FFF_FF8#e+32
approximately -1.70141E+38

LAST 164#0.7FFF_FF8#e+32
approximately 1.70141E+38

MACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_EMIN
MACHINE_ROUNDS
MACHINE_OVERFLOWS

2

24
127
-127
True
True

F-25

F_floating Characteristics £.9.3.1

F.9.3.2 D_fioating Characteristics

D_floating value and approximate decimal equivalent

Attribute {where applicable)

DIGITS 9

MANTISSA 31

EMAX 124

EPSILON 16#0.4000_0000_0000_000#e-7
approximately 9.3132257461548E-10

SMALL 16#0.8000_0000_0000_000#e-31
approximately 2.3509887016446E-38

LARGE 16#0.FFFF_FFFE_0000_000#e+31
approximately 2.1267647922655E+37

SAFE_EMAX 127

SAFE_SMALL 16#0.1000_0000_0000_000#e-31
approximately 2.9387358770557E~39

SAFE_LARGE 16#0.7FFF_FFFF_0000_000#%e+32
approximately 1.7014118338124E+38

FIRST -164#0.7FFF_FFFF_FFFF_FF8#e+32
approximately -1.7014118346047E+38

LAST 16#0.7FFF_FFFF_FFFF_FF8#e+32

approximately
MACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_EMIN
MACHINE_ROUNDS
MACHINE_OVERFLOWS

1.7014118346047E+38
2

56

127

-127

True

True

F.9.3.2 D_floating Characteristics

F-26

F.9.3.3 G_floating Characteristics

G_floating value and approximate decimal equivalent

Attribute (where applicable)

DIGITS 15

MANTISSA 51

EMAX 204

EPSILON 16#0.4000_0000_0000_00#e-12
approximately 8.881784197001E-16

SMALL 16#0.8000_0000_0000_00#e-51
approximately 1.944692274332E-62

LARGE 16#0.FFFF_FFFF_FFFF_EO#e+51
approximately 2.571100870814E+61

SAFE_EMAX 1023

SAFE_SMALL 16#0.1000_0000_0000_00#e-255
approximately 5.562684646268E-309

SAFE_LARGE 16#0.7FFF_FFFF_FFFF _F0O#e+256
approximately 8.988465674312E+307

FIRST ~16#0.7FFF_FFFF_FFFF_FC#e+256
approximately ~8.988465674312E+307

LAST 16#0.7FFF_FFFF_FFFF_FC#e+256
approximately 8.988465674312E4+307

MACHINE_RADIX 2

MACHINE_MANTISSA 53

MACHINE_EMAX 1023

MACHINE_EMIN -1023

MACHINE_ROUNDS True

MACHINE_OVERFLOWS True

F-27

G_floating Characteristics F9.3.3

F.9.3.4 H_floating Characteristics

H_floating value and approximate decimal equivalent

Attribute {where applicable)

DIGITS 33

MANTISSA 111

EMAX 444

EPSILON 16#0.4000_0000_0000_0000_0000_0000_0000_0#e-27
approximately 7.7037197775489434122239117703397E-34

SMALL 16#0.8000_0000_0000_0000_0000_0000_0000_0#e-111
approximately 1.1006568214637918210934318020936E-134

LARGE 16#0.FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFE_O#e+111
approximately 4.5427420268475430659332737993000E+133

SAFE_EMAX 16383

SAFE_SMALL 16#0.1000_0000_0000_0000_0000_0000_0000_0#e-4095
approximately 8.4052578577802337656566945433044E 4933

SAFE_LARGE 16#0.7FFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_0#c+4096
approximately 5.9486574767861588254287966331400E+4931

FIRST ~16#0.7FFF_¢'FFF_FFFF_FFFF_FFFF_FFFF_FFFF_C#e+4096
approximately ~-5.9486574767861588254287966331400E+4931

LAST 16#0.7FFF _FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_C#c+4096

approximately
MACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_EMIN
MACHINE_ROUNDS
MACHINE_OVERFLOWS

5.9486574767861588254287966331400E+4931
2

113

16383

-16383

True

True

F9.3.4 H_floating Characteristics

F-28

F.9.3.5 IEEE Single Fioat Characteristics

IEEE single float value and approximate decima: equivalent

Attribute {(where applicable)
DIGITS 6
MANTISSA 21
EMAX 84
EPSILON 16#0.1000_000#e—4
approximately 9.53674E-07
SMALL 16#0.8000_000#e-21
approximately 2.5849E-26
LARGE 16#0.FFFF_F80#E+21
approximately 1.93428E+25
SAFE_EMAX 125
SAFE_SMALL
approximately 1.17549E-38
SAFE_LARGE
approximately 4.25353E+37
FIRST
approximately -3.40282E+38
LAST
approximately 3.40282E+38
MACHINE_RADIX 2
MACHINE_MANTISSA 24
MACHINE_EMAX 128
MACHINE_EMIN -125
MACHINE_ROUNDS True
MACHINE_OVERFLOWS True

F-29

IEEE Single Float Characteristics F.9.3.5

F.9.3.6 IEEE Double Float Characteristics

IEEE double float value and approximate decimal equivalent

Attribute (where applicable)
DIGITS 15
MANTISSA 51
EMAX 204
EPSILON

approximately 8.8817841970012E-16
SMALL

approximately 1.9446922743316E-62
LARGE

approximately 2.5711008708144E+61
SAFE_EMAX 1021
SAFE_SMALL

approximately 2.22507385850720E-308
SAFE_LARGE

approximately 2.2471164185779E+307
FIRST

approximately -1.7976931348623E+308
LAST

approximately 1.7976931348623E+308
MACHINE_RADIX 2
MACHINE_MANTISSA 53
MACHINE_EMAX 1024
MACHINE_EMIN -1021
MACHINE_ROUNDS True

MACHINE_OVERFLOWS True

F.9.4 Attributes of Type DURATION

The values of the significant attributes of the type DURATION are as follows:

DURATION‘ DELTA 0.0001
DURATION’ SMALL 2~
DURATION' FIRST ~-131072.0000

F.9.4 Attributes of Type DURATION

F-30

DURATION' LAST 131071.9999
DURATION’ LARGE 131071.9999

F.9.5 Implementation Limits

DEC

systems

on which it
Limit applies Value
Maximum number of formal parameters in a All 32
subprogram or entry declaration that are of an
unconstrained record type
Maximum identifier length (number of characters) All 255
Maximum number of characters in a source line All 255
Maximum number of discriminants for a record type All 245
Maximum number of formal parameters in an entry or All 246
subprogram declaration
Maximum number of dimensions in an array type Al 255
Maximum number of library units and subunits in a All 4095
compilation closure’
Maximum number of library units and subunits in an All 16383
execution closure?
Maximum number of objects declared with the pragma All 32757
COMMON_OBJECT or PSECT_OBJECT
Maximum number of enumeration literals in an All 65535
enumeration type definition
Maximum number of lines in a source file All 65534
Maximum number of bits in any object All VAL |
Maximum size of the static portion of a stack frame Al 2%

(approximate)

1The compilation closure of a given unit is the total set of units that the given unit depends on,
directly and indirectly.

2The execution closure of a given unit is the compilation closure plus all associated secondary units
(library bodics and subunits).

F-31 Implementation Limits F9.5

